
 The OpenGL Kit

The Device Kit − Table of Contents

 The OpenGL Kit ..1

 BGLView ..2

The OpenGL Kit: Master Index...10

i

 The OpenGL Kit
The OpenGL Kit provides an interface between your BeOS application and the OpenGL graphics library, which is provided with BeOS. The one class
in the OpenGL Kit, BGLView, lets you display graphics rendered using OpenGL on a computer running the BeOS.

Before Release 4.5, the OpenGL Kit also had a BGLScreen class. BGLScreen functionality has been subsumed by
BGLView. Old BGLScreen code will still run, but new OpenGL Kit code must use BGLView objects only.

The BGLView class is used to create a view within a window that contains OpenGL−rendered data. Derived from BView, it adds functions for locking
and unlocking the OpenGL context associated with the view, as well as for copying pixel data into and out of the graphics buffer, and swapping the
front and back buffers.

If you want to use OpenGL graphics in a BDirectWindow, create your BDirectWindow and attach a BGLView to it.

 OpenGL On BeOS

BeOS has included an OpenGL implementation since the first Preview Release for PowerPC processors. This implementation of OpenGL is complete,
and GLU is supported as well. The optional AUX and GLUT libraries, however, aren't supported at this time.

Also, the current implementation of OpenGL on BeOS supports only 32−bit graphic buffers. Your BGLView or BGLScreen can be in any graphics
mode you want, but the graphics buffer offscreen is always 32−bit.

Complete descriptions of the features and use of OpenGL are beyond the scope of this book; however, you can get full documentation of OpenGL as
well as sample code at the OpenGL web site at http://www.opengl.org.

There are also some sample OpenGL programs that have already been ported to BeOS available for download on the Be web site; visit
http://www.be.com/developers/topics/opengl.html.

1

#BView
#BDirectWindow
#BDirectWindow

 BGLView
Derived from: public BView

Declared in: be/opengl/GLView.h

Library: libGL.so

Summary

The BGLView class provides a means for rendering graphics using OpenGL calls in a view.

 The Graphics Buffers
A BGLView automatically manages video buffers and interfaces to supported hardware acceleration chipsets; all you have to do is call the appropriate
OpenGL calls to render your graphics.

The frontbuffer is the graphics buffer that is currently visible on the screen. A backbuffer is a graphics buffer that is located offscreen.

In a single−buffered context, drawing commands are performed in the frontbuffer. Drawing performed in single−buffered mode immediately appears
on the screen.

In double−buffered contexts, drawing is performed in the backbuffer and is not visible onscreen until the SwapBuffers() function is called to swap
the two buffers and refresh the screen image.

The BGLView class currently only supports double−buffered OpenGL contexts.

 BGLView & BDirectWindow

The BGLView class provides a function, DirectConnected() , that your BDirectWindow::DirectConnected() function can call to
handle the work of refreshing the OpenGL display.

 Using OpenGL
Long−winded discussion of how to use OpenGL is well beyond the realm of what this book is intended to cover; for complete information on
OpenGL, see the OpenGL web site at http://www.opengl.org, where you'll find complete documentation and sample code.

However, it's important to understand how OpenGL fits into the framework of a BeOS application. The example that follows will draw a pattern of
lines around a central point, as seen in the picture below.

2

#BView
GLView.h
GLView.summary.html

This code has been structured to make it relatively easy to port sample programs from the OpenGL web site; however, most of those samples use
GLUT features, which aren't available yet in the BeOS implementation of OpenGL. In particular, most of the samples on the OpenGL web site use
GLUT functions to handle user interface of some form. You'll have to add code for this yourself.

The complete source code and project file can be found on the Be web site at <<<insert URL here>>>.

The first thing that's needed, as always, is an application object, which we establish as follows:

 class SampleGLApp : public BApplication {
 public:
 SampleGLApp();
 private:
 SampleGLWindow theWindow;
 };

The SampleGLApp class has a constructor and a private pointer to the application's window. The constructor looks like this:

 SampleGLApp::SampleGLApp()
 : BApplication("application/x−vnd.Be−GLSample") {
 BRect windowRect;
 uint32 type;

 // Set type to the appropriate value for the
 // sample program you>re working with.

 type = BGL_RGB|BGL_DOUBLE;

 windowRect.Set(50,50,350,350);
 theWindow = new SampleGLWindow(windowRect, type);
 }

The first thing the constructor here does is set the variable type to describe the context we need. In this example, we want an RGB context with
double−buffering on, so we specify BGL_RGB and BGL_DOUBLE. Then we create the window using the new function.

The SampleGLWindow class is almost as simple:

 class SampleGLWindow : public BWindow {
 public:
 SampleGLWindow(BRect frame, uint32 type);
 virtual bool QuitRequested();

 private:
 SampleGLView *theView;
 };

The constructor accepts a frame rectangle for the window and the OpenGL context type parameter that will be passed to SampleGLView's constructor.
As always, QuitRequested() is overridden to post a B_QUIT_REQUESTED message to the application and return true. A pointer to the
SampleGLView object is maintained as well.

 BGLView

3

#QuitRequested()
#B_QUIT_REQUESTED

The constructor is fairly trivial:

 SampleGLWindow::SampleGLWindow(BRect frame, uint32 type)
 : BWindow(frame, "OpenGL Test", B_TITLED_WINDOW, 0) {
 AddChild(theView=new SampleGLView(Bounds(), type));
 Show();
 theView−>Render();
 }

This code establishes the window, then creates the SampleGLView and adds it as a child of the window. Once that's done, the window is made visible
by calling Show(). Finally, the SampleGLView's contents are drawn by calling the SampleGLView's Render() function.

The meat of this program is in the SampleGLView class, which follows:

 class SampleGLView : public BGLView {
 public:
 SampleGLView(BRect frame, uint32 type);
 virtual void AttachedToWindow(void);
 virtual void FrameResized(float newWidth, float newHeight);
 virtual void ErrorCallback(GLenum which);

 void Render(void);

 private:
 void gInit(void);
 void gDraw(void);
 void gReshape(int width, int height);

 float width;
 float height;
 };

The SampleGLView class implements the constructor and reimplements three of the functions of the BGLView class: AttachedToWindow(),
FrameResized() , and ErrorCallback(). An additional public method, Render(), will contain the actual code for drawing the contents of
the view.

In addition, there are three private methods that will contain the actual OpenGL calls for initializing, drawing, and resizing the BGLView's contents
and a pair of values to represent the width and height of the BGLView.

The constructor is very simple:

 SampleGLView::SampleGLView(BRect frame, uint32 type)
 : BGLView(frame, "SampleGLView", B_FOLLOW_ALL_SIDES, 0,
 type) {
 width = frame.right−frame.left;
 height = frame.bottom−frame.top;
 }

For the most part, the constructor defers to the BGLView constructor, setting the resizingMode to B_FOLLOW_ALL_SIDES and the OpenGL context
type to the value specified.

The only addition is that the width and height of the view are cached, based upon the frame rectangle specified. This is done because we'll need
that information when the view is attached to the window, and the BGLView class doesn't include Width() and Height() functions.

The AttachedToWindow() function, which is called when the SampleGLView is attached to its parent window, looks like this:

 void SampleGLView::AttachedToWindow(void) {
 LockGL();
 BGLView::AttachedToWindow();
 gInit();
 gReshape(width, height);
 UnlockGL();
 }

This performs the initialization of the OpenGL context. First, LockGL() is called to lock the context and let the OpenGL Kit know which view
should be targeted by future OpenGL calls. Then the inherited version of AttachedToWindow() is called to let BGLView set up the view
normally.

Once that's done, the gInit() and gReshape() functions are called. gInit(), as we'll see shortly, is responsible for initializing the context.
gReshape() is called to configure the OpenGL coordinate system for the BGLView given the current width and height of the view.

Finally, UnlockGL() is called to release the OpenGL context for the SampleGLView and to indicate that we're done using the context for the time
being.

The FrameResized() function is called automatically whenever the SampleGLView is resized:

 void SampleGLView::FrameResized(float newWidth, float newHeight) {
 LockGL();
 BGLView::FrameResized(width, height);
 width = newWidth;
 height = newHeight;

 gReshape(width,height);

 UnlockGL();
 Render();
 }

As always, this function begins by locking the OpenGL context. It then calls the inherited version of FrameResized() to let BGLView perform
whatever tasks it may need to do.

The new width and height of the view are saved in the width and height variables, then the gReshape() function is called to adjust the
OpenGL context given the new size of the view.

 BGLView

4

#Show()
#Width()
#Height()

Finally, the context is unlocked, and Render() is called to redraw the view's contents at the new size.

Although the default ErrorCallback() function provided by BGLView would be acceptable, we include one of our own anyway:

 void SampleGLView::ErrorCallback(GLenum whichError) {
 fprintf(stderr, "Unexpected error occured (%d):n", whichError);
 fprintf(stderr, " %sn", gluErrorString(whichError));
 }

Note the use of the gluErrorString() OpenGL function to obtain an appropriate error message for the error code. You can use this function to
avoid displaying error messages for errors that are acceptable or expected.

The gInit() function sets up the OpenGL context and initializes variables that will be used later:

 void SampleGLView::gInit(void) {
 glClearColor(0.0, 0.0, 0.0, 0.0);
 glLineStipple(1, 0xF0E0);
 glBlendFunc(GL_SRC_ALPHA, GL_ONE);
 use_stipple_mode = GL_FALSE;
 use_smooth_mode = GL_TRUE;
 linesize = 2;
 pointsize = 4;
 }

Briefly, this sets the clear color (the background color) of the view to black, configures the pattern for stippled lines and the blending function to be
used when blending is enabled. It also selects not to use stippled lines (you can change this by setting use_stipple_mode to GL_TRUE) and to use
anti−aliasing when drawing the lines (you can change this by setting use_smooth_mode to GL_FALSE). It also chooses to use 2 pixel wide lines,
and 4 pixel wide points.

This function doesn't call LockGL() and UnlockGL(), so they must be called by the calling function (and if you look at the
AttachedToWindow() code above, you'll see that this is the case).

There are some global variables used by this program (some of them accessed in the above code), so lets' take a quick look at those:

 GLenum use_stipple_mode; // GL_TRUE to use dashed lines
 GLenum use_smooth_mode; // GL_TRUE to use anti−aliased lines
 GLint linesize; // Line width
 GLint pointsize; // Point diameter

 float pntA[3] = {
 −160.0, 0.0, 0.0
 };
 float pntB[3] = {
 −130.0, 0.0, 0.0
 };

The varaibles use_stipple_mode , use_smooth_mode , linesize , and pointsize are discussed in the gInit() function above. The
two float arrays define points in three−dimensional space. These points will be used as the endpoints of the lines drawn by the gDraw() function.

The gDraw() function does the actual drawing into the OpenGL context:

 void SampleGLView::gDraw(void) {
 GLint i;

 glClear(GL_COLOR_BUFFER_BIT);
 glLineWidth(linesize);

 if (use_stipple_mode) {
 glEnable(GL_LINE_STIPPLE);
 } else {
 glDisable(GL_LINE_STIPPLE);
 }

 if (use_smooth_mode) {
 glEnable(GL_LINE_SMOOTH);
 glEnable(GL_BLEND);
 } else {
 glDisable(GL_LINE_SMOOTH);
 glDisable(GL_BLEND);
 }

 glPushMatrix();

 for (i = 0; i < 360; i += 5) {
 glRotatef(5.0, 0,0,1); // Rotate right 5 degrees
 glColor3f(1.0, 1.0, 0.0); // Set color for line
 glBegin(GL_LINE_STRIP); // And create the line
 glVertex3fv(pntA);
 glVertex3fv(pntB);
 glEnd();

 glPointSize(pointsize); // Set size for point
 glColor3f(0.0, 1.0, 0.0); // Set color for point
 glBegin(GL_POINTS);
 glVertex3fv(pntA); // Draw point at one end
 glVertex3fv(pntB); // Draw point at other end
 glEnd();
 }

 glPopMatrix(); // Done with matrix
 }

Without getting too deeply−involved in OpenGL specifics, this code begins by clearing the context's buffer and setting the line width. It then enables
the features selected by the use_stipple_mode and use_line_mode variables.

Once that's done, it establishes a matrix to be used for rotating the lines and draws the lines with points at each end, drawing one every five degrees in
a 360−degree circle around the center of the window. After drawing all the lines, the matrix is destroyed and the function returns.

 BGLView

5

The gReshape() function handles adjusting the OpenGL context's coordinate system and viewport when the SampleGLView is first created, and
whenever the view is resized:

 void SampleGLView::gReshape(int width, int height) {
 glViewport(0, 0, width, height);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluOrtho2D(−175, 175, −175, 175);
 glMatrixMode(GL_MODELVIEW);
 }

This code simply sets the viewport's coordinate system to reflect the new width and height of the view, and establishes a projection matrix such that no
matter what the size and shape of the window, the center of the window is considered to be (0,0) and the window is 300 units wide and 300 units tall.
This lets the rendering code draw without having to worry about scaling; OpenGL handles it for us.

The details of how this works are, again, beyond the scope of this chapter.

Finally, the Render() function is the high−level function used to actually update the contents of the SampleGLView whenever we wish to redraw it:

 void SampleGLView::Render(void) {
 LockGL();
 gDraw();
 SwapBuffers();
 UnlockGL();
 }

LockGL() is called to lock the context before calling gDraw() to do the actual OpenGL calls to draw the view. Then the
SwapBuffers() function is called to swap the backbuffer that was just drawn to the screen, and the context is unlocked.

 Adapting OpenGL Sample Code

The program described above can easily be adapted to be used with other sample code from the OpenGL web site. First, replace the code in the
gInit(), gDraw(), and gReshape() functions with the code from the Init(), Draw(), and Reshape() functions in the sample code
(some of the sample programs give these functions slightly different names).

Keep in mind that the current implementation of OpenGL under BeOS doesn't support single−buffered graphics, so you'll need to make whatever
adjustments are necessary to use double−buffering.

Once these functions have been implemented, copy any global variables from the sample program into your project. Finally, in the SampleGLApp
constructor, fix the OpenGL context type and window size information to match that used by the sample program.

You may also wish to implement code to handle user interface to let you configure the sample program; that's beyond the scope of this chaptersee the
Interface Kit chapter of the Be Developer's Guide for further information on handling user input.

 Hook Functions
ErrorCallback()
Can be implemented to handle OpenGL errors.

 Constructor and Destructor

 BGLView()

BGLView(BRect frame, const char *name,
 int32 resizingMode,
 int32 flags, int32 type)

Initializes the view, then creates a new OpenGL drawing context and attaches it to the view. The type argument specifies the OpenGL type
specification for the view:

BGL_INDEX Use indexed color (8−bit graphics). Not currently supported.

BGL_SINGLE Use single−buffering; all rendering is done directly to the display. This is not currently supported by the BeOS implementation
of OpenGL. This is the default if neither BGL_SINGLE nor BGL_DOUBLE is specified.

BGL_DOUBLE Use double−buffered graphics. All rendering is done to an offscreen buffer and only becomes visible when the
SwapBuffers() function is called.

BGL_ACCUM Requests that the view have an accumulation buffer.

BGL_ALPHA Requests that the view's color buffer include an alpha component.

BGL_DEPTH Requests that the view have a depth buffer.

 BGLView

6

#BRect

BGL_STENCIL Requests that the view have a stencil buffer.

 ~BGLView()

virtual ~BGLView()

Disposes of the OpenGL context for the view.

 Member Functions

 AttachedToWindow()

virtual void AttachedToWindow(void)

Calls the inherited version of AttachedToWindow() and sets the view color to B_TRANSPARENT_32_BIT (this improves performance by
preventing the Application Server from erasing the view, since OpenGL takes over responsibility for drawing into the view).

 CopyPixelsIn() , CopyPixelsOut()

status_t CopyPixelsIn(BBitmap *source , BPoint dest)

status_t CopyPixelsOut(BPoint source , BBitmap *dest)

These functions copy pixel data into and out of the OpenGL draw buffer for the context.

CopyPixelsIn() copies the entire contents of the source BBitmap into the OpenGL context, offset such that the top−left corner of the BBitmap is
drawn at the point dest in the OpenGL buffer.

CopyPixelsOut() copies from the OpenGL draw buffer into the specified BBitmap. The area copied is the size of the dest bitmap and contains all
data from the specified source point to the bottom−right corner of the buffer.

If the source is larger than the destination, it's clipped at the bottom and right edges to fit; no scaling is performed Also,
the OpenGL context and the BBitmap must be in the same color space.

RETURN CODES

B_OK. The data was copied without error.

• B_BAD_VALUE. The current draw buffer is not valid, or the destination buffer's width or height is less than or equal to zero.

• B_BAD_TYPE. The source and destination are in different color spaces.

CopyPixelsOut() see CopyPixelsIn()

 DirectConnected()

void DirectConnected(direct_buffer_info *directInfo)

If the BGLView is in a BDirectWindow, you should call this from your BDirectWindow::DirectConnected() function to let OpenGL update
the window properly.

 BGLView

7

#Transparency%20Constants
#BBitmap
#BPoint
#BPoint
#BBitmap
#BBitmap
#BBitmap
#B_BAD_VALUE
#B_BAD_TYPE
#BDirectWindow

 Draw()

virtual void Draw(BRect updateRect)

Refreshes the contents of the BGLView by copying the frontbuffer to the screen.

If the view's color space is eight bits deep and the GL_DITHER OpenGL option is enabled, the display is dithered.

 EmbeddedView()

BView *EmbeddedView(void)

Returns a pointer to an embedded view that encompasses the current OpenGL drawing buffer, as defined by OpenGL, for the BGLView. If the view is
single−buffered, this will be the frontbuffer, and if the view is double−buffered, the embedded view will encompass the backbuffer.

EmbeddedView() returns NULL if, for any reason, BView functions can't be used in the GL buffer. Starting with BeOS
R4, this function always returns NULL, as the new, high−performance implementation of OpenGL does not support
tinkering with the view.

 EnableDirectMode()

void EnableDirectMode(bool enabled)

Call this function to tell the BGLView whether or not it should render in direct mode. If you're using a BDirectWindow and want video refreshes to be
done through the direct window method, pass true for enabled. If you don't want to use the direct window method, pass false.

 ErrorCallback()

virtual void ErrorCallback(GLenum errorCode)

Called when an OpenGL error occurs. By default, this function invokes the debugger with an error message reading "GL: Error code $xxxx." You can
(and probably should) reimplement this function to cope with errors more gracefully.

 FrameResized()

virtual void FrameResized(float width, float height)

Calls the inherited version of FrameResized(), releases tables that need to be recalculated, and resizes the OpenGL buffers.

You can augment this function to perform other necessary tasks, such as adjusting your BGLView's coordinate system.

 LockGL() , UnlockGL()

void LockGL(void)

void UnlockGL(void)

These functions lock and unlock the OpenGL context. You must lock the context before issuing any OpenGL commands, and unlock it when you're

 BGLView

8

#BRect
#BView
#BView
#BDirectWindow

donethis is how OpenGL knows which context the drawing commands are intended for, since OpenGL itself isn't encapsulated within the BGLView
class. For example:

 LockGL(); /* lock the OpenGL context
 glEnable(GL_DITHER); /* turn on dithering support */
 UnlockGL();

Failing to lock and unlock the context appropriately will result in unpredictable behavior and may cause your application to crash.

 SwapBuffers()

void SwapBuffers(void)

void SwapBuffers(bool vSync)

Swaps the front buffer and back buffer, then redraws the contents of the BGLView.

This function has no effect if the view is single−buffered.

If vSync is specified and is true, the swap is synchronized with vertical blanking.

UnlockGL() see LockGL()

 BGLView

9

The OpenGL Kit: Master Index

A

AttachedToWindow() BGLView

C

CopyPixelsIn() BGLView

CopyPixelsOut() BGLView

D

Draw() BGLView

E

EnableDirectMode() BGLView

ErrorCallback() BGLView

F

G

BGLView BGLView

BGLView() BGLView

~BGLView() BGLView

The Graphics Buffers BGLView

H

Hook Functions BGLView

L

LockGL() BGLView

M

O

The OpenGL Kit The OpenGL Kit

10

OpenGL On BeOS The OpenGL Kit

P

S

U

use_line_mode BGLView

use_smooth_mode BGLView

use_stipple_mode BGLView

Using OpenGL BGLView

Using OpenGL BGLView

W

The OpenGL Kit: Master Index

11

	The Device Kit - Table of Contents
	 The OpenGL Kit
	 BGLView
	The OpenGL Kit: Master Index

