
 Network Sockets

The Device Kit − Table of Contents

 Network Sockets ..1

 BNetAddress ..10

 BNetBuffer ...12

 BNetDebug ...15

 BNetEndpoint ..16

The Network Kit: Master Index..21

i

 Network Sockets
Declared in: be/kit/net/socket.h

Library: libnet.so

A socket is an entry onto a network. To transmit data to another computer, you create a socket, tell it how to find the other computer, and then tell it to
send. To receive data, you create a socket, tell it which computer to listen to (in some cases), and then wait for data to come pouring in.

The socket story starts with the socket() function. The set of functions you need to call after that depends on the type of socket you're creating (as
explained in socket()).

 Functions

 socket() , closesocket()

int socket(int family, int type, int protocol)

int closesocket(int socket)

The socket() function returns a token (a non−negative integer) that represents the local end of a connection to another machine (0 is a valid socket
token).

Socket tokens are not file descriptors (this violates the BSD tradition).

Freshly returned, a socket token is abstract and unusable; to put the token to use, you have to pass it as an argument to other functionssuch as
bind() and connect() that know how to establish a connection over the network. The function's arguments, which are examined in detail in "The
socket() Arguments", accept these values:

family AF_INET

type SOCK_STREAM, SOCK_DGRAM

protocol 0, IPPROTO_TCP, IPPROTO_UDP, IPPROTO_ICMP

The most typical socket calls are:

 /* Create a stream TCP socket. */
 int tcp_socket = socket(AF_INET, SOCK_STREAM, 0);

 /* Create a datagram UDP socket. */
 int udp_socket = socket(AF_INET, SOCK_DGRAM, 0);

ICMP messages are normally sent through "raw" sockets; however, the Network Kit doesn't currently support raw sockets, so you should use a
datagram socket instead:

 /* Create a datagram icmp socket. */
 long icmp_socket = socket(AF_INET, SOCK_DGRAM, IPPROTO_ICMP);

closesocket() closes a socket's connection (if it's the type of socket that can hold a connection) and frees the resources that have been assigned to
the socket. When you're done with the sockets that you've created, you should pass each socket token to closesocket(). No socket is exempt from
the need to be closed. This extends to sockets that are created for you by the accept() function.

 The socket() Arguments

socket()'s three arguments, all of which take predefined constants as values, describe the type of communication the socket can handle:

• family describes the network address format that the socket understands. Currently, it must be AF_INET (the Internet address format).

• type describes the persistence of the connection that can be formed through this socket. It must be either SOCK_STREAM or
SOCK_DGRAM. SOCK_STREAM means the connection (which is formed through a connect() or bind() call) remains open until told
to close. SOCK_DGRAM describes a datagram socket that's only open while data is being sent or received (typically through
sendto() and recvfrom()). It's closed at all other times. Keep in mind that you still have to call closesocket() on a datagram
socket when you're done with it.

• protocol describes the messaging protocol, which is closely related to the socket type. Although there are four acceptable values (0,
IPPROTO_TCP, IPPROTO_UDP, and IPPROTO_ICMP), the only values that you should actually use are 0 or IPPROTO_ICMP. 0 tells

1

socket.h

the socket to choose the correct protocol based on the socket type: If you set the type to SOCK_STREAM, then a protocol of 0
automatically sets the messaging protocol to IPPROTO_TCP. Similarly, IPPROTO_UDP is the correct protocol for SOCK_DGRAM. It's an
error to ask for a "udp stream" or a "tcp datagram."

 Sorts of Sockets

There are only two socket type constants: SOCK_STREAM and SOCK_DGRAM. However, if we look at the way sockets are used, we see that there are
really five different categories of sockets, as illustrated below.

The labelled ovals represent individual computers that are attached to the network. The solid circles represent individual sockets. The numbers near the
sockets are keys to the socket categories, which are:

1. The stream listener socket. A stream listener socket provides access to a service that's running on the "listener" machine (you might want to
think of the machine as a "server.") The listener socket waits for client machines to "call in" and ask to be served. In order to listen for clients, the
listener must call bind() , which "binds" the socket to an IP address and machine−specific port, and then listen(). Thus primed, the socket waits
for a client message to show up by sitting in an accept() call.

2. The stream client socket. A stream client socket asks for service from a server machine by attempting to connect to the server's listener socket.
It does this through the connect() function. A stream client can be bound (you can call bind() on it), but it's not mandatory.

3. The "accept" socket. When a stream listener hears a client in an accept() call, the function call creates yet another socket called the
"accept" socket. Accept sockets are valid sockets, just like those you create through socket(). In particular, you have to remember to close accept
sockets (through closesocket()) just as you would the sockets you explicitly create. Note that you can't bind an accept socketthe socket is bound
automatically by the system.

4. The datagram receiver socket. A datagram receiver socket is sort of like a stream listener: It calls bind() and waits for "senders" to send
messages to it. Unlike the stream listener, the datagram receiver doesn't call listen() or accept(). Furthermore, when a datagram sender sends a
message to the receiver, there's no ancillary socket created to handle the message (there's no UDP analog to the TCP accept socket).

5. The datagram sender socket. A datagram sender is the simplest type of socketall it has to do is identify a datagram receiver and send
messages to it, through the sendto() function. Binding a datagram sender socket is optional.

TCP communication is two−way. Once the link between a client and the listener has been established (through bind()/listen() /accept() on
the listener side, and connect() on the client side), the two machines can talk to each other through respective and complementary send() and
recv() calls.

Communication along a UDP path, on the other hand, is one−way. The datagram sender can send messages (through sendto()), and the datagram
receiver can receive them (through recvfrom()), but the receiver can't send message back to the sender. However, you can simulate a two−way
UDP conversation by binding both sockets. This doesn't change the definition of the UDP path, or the capabilities of the two types of datagram
sockets, it simply means that a bound datagram socket can act as a receiver (it can call recvfrom()) or as a sender (it can call sendto()).

To be complete, it should be mentioned that datagram sockets can also invoke connect() and then pass messages
through send() and recv(). The datagram use of these functions is a convenience; its advantages are explained in the
description of the sendto() function.

RETURN CODES

Upon failure, socket() returns a negative value and sets errno to...

• EAFNOSUPPORT.,format was other than AF_INET.

• EPROTOTYPE.,type and protocol mismatch.

• EPROTONOSUPPORT.,Unrecognized type or protocol value.

closesocket() returns a negative value if its argument is invalid.

 bind()

int bind(int socket, const struct sockaddr *interface, int size)

The bind() function creates an association between a socket and an "interface," where an interface is a combination of an IP address and a port
number. Binding is, primarily, useful for receiving messgaes: When a message sender (whether it's a stream client or a datagram sender) sends a
message, it tags the message with an IP address and a port number. The receiving machinethe machine with the tagged IP addressdelivers the message
to the socket that's bound to the tagged port.

The necessity of the bind operation depends on the type of socket; referring to the five categories of sockets enumerated in the socket() function
description (and illustrated in the charming diagram found there), the "do I need to bind?" question is answered thus:

1. Stream listener sockets must be bound. Furthermore, after binding a listener socket, you must then call listen() and, when a client calls,
accept().

2. Stream client sockets can be bound, but they don't have to be. If you're going to bind a client socket, you should do so before you call
connect(). The advantages of binding a stream client escape me at the moment. In any case, the client doesn't have to bind to the same port number

 Network Sockets

2

as the listenerthe listener's binding and the client's binding are utterly separate entities (let alone that they are on different machines). However, the
client does connect to the interface that the listener is bound to.

3. Stream attach sockets must not be bound.

4. Datagram receiver sockets must be bound.

5. Datagram sender sockets don't have to be bound...but if you're going to turn around and use the socket as a receiver, then you'll have to bind
it.

Once you've bound a socket, you can't unbind it. If you no longer want the socket to be bound to its interface, the only thing you can do is close the
socket (closesocket()) and start all over again.

Also, a particular interface can be bound by only one socket at a time and a single socket can only bind to one interface at a time. If your socket needs
to bind to more than one interface, you need to create more than one socket and bind each one separately. An example of this is given later in this
function description.

The 1−to−1 binding differs with the BSD socket implementation, which expects a socket to be able to bind to more than
one interface. Consider it a bug that will be fixed in a subsequent release.

 The bind() Arguments

bind()'s first argument is the socket that you're attempting to bind. This is, typically, a socket of type SOCK_STREAM. The interface argument is
the address/port combination (or "interface") to which you're binding the socket. The argument is typed as a sockaddr structure, but, in reality, you
have to create and pass a sockaddr_in structure cast as a sockaddr. The sockaddr_in structure is defined as:

 struct sockaddr_in {
 unsigned short sin_family;
 unsigned short sin_port;
 struct in_addr sin_addr;
 char sin_zero[4];
 };

• sin_family is the same as the address format constant that used to create the socket (the
first argument to socket()). Currently, it's always AF_INET.

• sin_port is the port number that the socket will bind to, given in network byte order. Valid port numbers are between 1 and 65535;
numbers up to 1024 are reserved for services such as ftp and telnet. If you're not implementing a standard service, you should choose a port
number greater than 1024. The actual value of the port number is meaningless, but keep in mind that the port number must be unique for a
particular address; only one socket can be bound to a particular address/port combination.

Currently, there's no system−defined mechanism for allowing a client/sender machine to ask a listener/receiver machine
for its port numbers. Therefore, when you create a networked application, you either have to hard−code the port numbers
or, better yet, provide default port numbers that the user (or a system administrator) can easily change.

• sin_addr is an in_addr structure that stores, in its s_addr field, the IP address of the socket's machine. As always, the address is in
network byte order. You can use an address of 0 to tell the binding mechanism to find an address for you. By convention, binding to
address 0 (which is conveniently symbolized by the INADDR_ANY address) means that you want to bind to every address by which your
computer is known, including the "loopback" (address 127.0.0.1, or the constant INADDR_LOOPBACK).

The BeOS does not currently implement global binding. When you bind to INADDR_ANY, the bind() function binds to the
first available interface (where "availability" means the address/port combination is currently unbound). Internet interfaces
are considered before the loopback interface. If you want to bind to all interfaces, you have to create a separate socket for
each. An example of this is given later.

• sin_zero is padding. To be safe, you should fill it with zeros.

The size argument is the size, in bytes, of the second argument.

If the bind() call is successful, the interface argument is set to contain the actual address that was used. If the socket can't be bound, the function
returns a negative value, and sets the global errno to EABDF if the socket argument is invalid; for all other errors, errno is set to −1.

The following example shows a typical use of the bind() function. The example uses the fictitious gethostaddr() function that's defined in the
description of the gethostname() function on page 23.

 struct sockaddr_in sa;
 int sock;
 long host_addr;

 /* Create the socket. */
 if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0) {

 Network Sockets

3

 /* error */
 }

 /* Set the address format for the imminent bind. */
 sa.sin_family = AF_INET;

 /* We>ll choose an arbitrary port number translated to network byte order. */
 sa.sin_port = htonl(2125);

 /* Get the address of the local machine. If the address can>t
 * be found (the function looks it up based on the host name),
 * then we use address INADDR_ANY.
 */
 if ((host_addr = (ulong)gethostaddr()) == −1) {
 host_addr = INADDR_ANY;
 }
 sa.sin_addr.s_addr = host_addr;

 /* Clear sin_zero. */
 memset(sa.sin_zero, 0, sizeof(sa.sin_zero));

 /* Bind the socket. */
 if (bind(sock, (struct sockaddr *)&sa, sizeof(sa)) < 0) {
 /* error */
 }

As mentioned earlier, the bind−to−all−interfaces convention (by asking to bind to address 0) isn't currently implemented. Thus, if the
gethostaddr() call fails in the example, the socket will be bound to the first address by which the local computer is known.

But let's say that you really do want to bind to all interfaces. To do this, you have to create separate sockets for each interface, then call bind() on
each one. In the example below we create a series of sockets and then bind each one to an interface that specifies address 0. In doing this, we depend
on the "first available interface" rule to find the next interface for us. Keep in mind that a successful bind() rewrites the contents of the
sockaddr argument (most importantly, it resets the 0 address component). Thus, we have to reinitialize the structure each time through the loop:

 /* Declare an array of sockets. */
 #define MAXSOCKETS
 int socks[MAXSOCKETS];
 int sockN;
 int bind_res;

 struct sockaddr_in sock_addr;

 for (sockN = 0; sockN < MAXSOCKETS; sockN++)
 {
 (socks[sockN] = socket(AF_INET, SOCK_STREAM, 0));
 if (socks[sktr] < 0) {
 perror("socket");
 goto sock_error;
 }

 /* Initialize the structure. */
 sa.sin_family = AF_INET;
 sa.sin_port = htonl(2125);
 sa.sin_addr.s_addr = 0;
 memset(sa.sin_zero,0,sizeof(sa.sin_zero));

 bind_res = bind(socks[sockN],
 (struct sockaddr *)&sa,
 sizeof(sa));

 /* A bind error means we>ve run out of addresses. */
 if (bind_res < 0) {
 closesocket(socks[sockN−−]);
 break;
 }
 }

 /* Use the bound socket (listen, accept, recv/send). */
 ...

 sock_error:
 for (;sockN >=0 sockN−−)
 closesocket(socks[sockN]);

To ask a socket about the address and port to which it is bound you use the getsockname() function, described later in this section.

RETURN CODES

Upon failure, bind() returns a negative value and sets errno to...

• EABDF. The socket argument is invalid.

• B_ERROR. All other errors.

 connect()

int connect(int socket, const struct sockaddr *remote_interface, int remote_size)

The meaning of the connect() function depends on the type of socket that's passed as the first argument:

• If it's a stream client, then connect() attempts to form a connection to the socket that's specified by remote_interface. The remote

 Network Sockets

4

#B_ERROR

socket must be a bound stream listener. A client socket can only be connected to one listener at a time. Note that you can't call
connect() on a stream listener.

• If it's a datagram socket (either a sender or a receiver), connect() simply caches the remote_interface information in anticipation of
subsequent send() and recv() calls. By using connect(), a datagram avoids the fuss of filling in the remote information that's
needed by the "normal" datagram message functions, sendto() and recvfrom() . Note that a datagram may only call send() and
recv() if it has first called connect().

The remote_interface argument is a pointer to a sockaddr_in structure cast as a sockaddr pointer. The remote_size value gives the size of
remote_interface. See the bind() function for a description of the sockaddr_in structure.

Currently, you can't disconnect a connected socket. If you want to connect to a different listener, or reset a datagram's interface information, you have
to close the socket and start over.

When you attempt to connect() a stream client, the listener must respond with an accept() call. Having gone through this dance, the two sockets
can then pass messages to each other through complementary send() and recv() calls. If the listener doesn't respond immediately to a client's
attempt to connect, the client's connect() call will block. If the listener doesn't respond within (about) a minute, the connection will time out. If the
listener's acceptance queue is full, the client will be refused and connect() will return immediately.

If the socket is in no−block mode (as set through setsockopt()), and blocking would occur otherwise, connect() returns immediately with a result
of EWOULDBLOCK.

RETURN CODES

Upon failure, connect() returns a negative number and sets errno to...

• EWOULDBLOCK.,The connection attempt would block.

• EISCONN.,The socket is already connected.

• ECONNREFUSED.,The listener rejected the connection.

• ETIMEDOUT.,The connection attempt timed out.

• ENETUNREACH.,The client can't get to the network.

• EBADF.,The socket argument is invalid.

• B_ERROR. All other errors.

 getpeername() , getsockname()

int getpeername(int socket, struct sockaddr *interface, int *size)

int getsockname(int socket, struct sockaddr *interface, int *size)

getsockname() returns, by reference in interface, a sockaddr_in structure that contains the interface information for the bound socket given
by socket.

getpeername() returns, in the structure pointed to by the interface parameter, a sockaddr_in structure that describes the remote interface to
which the socket is connected.

In both cases, the *size argument gives the size of the interface structure; *size is reset, on the way out, to the size of the interface argument as it's
passed back. Note that the sockaddr_in pointer that you pass as the second argument must be cast as a pointer to a sockaddr structure:

 struct sockaddr_in interface;
 int size = sizeof(interface);

 /* We>ll assume "sock" is a valid socket token. */
 if (getsockname(sock, (struct sockaddr*)&interface, &size) < 0)
 /* error */

RETURN CODES

Upon failure, getsockname() and getpeername() return negative numbers and set errno to...

• EINVAL.,The *size value (going in) wasn't big enough.

• EBADF.,The socket argument is invalid.

• B_ERROR. All other errors.

 listen() , accept()

int listen(int socket, int acceptance_count)

 Network Sockets

5

#B_ERROR
#B_ERROR

int accept(int socket, struct sockaddr *client_interface, int *client_size)

After you've bound a stream listener socket to an interface (through bind()), you then tell the socket to start listening for clients that are trying to
connect. You then pass the socket to accept() which blocks until a client connects to the listener (the client does this by calling connect(),
passing it a description of the interface to which the listener is bound).

When accept() returns, the value that it returns directly is a new socket token; this socket token represents an "accept" socket that was created as a
proxy (on the local machine) for the client. To receive a message from the client, or to send a message to the client, the listener must pass the accept
socket to the respective stream messaging functions, recv() and send().

A listener only needs to invoke listen() once; however, it can accept more than one client at a time. Often, a listener will spawn an "accept" thread
that loops over the accept() call.

Only stream listeners need to invoke listen() and accept(). None of the other socket types (enumerated in the
socket() description) need to call these functions.

listen() takes two arguments: The first is the socket that you want to have start listening. The second is the length of the listener's "acceptance
count." This is the number of clients that the listener is willing to accept at a time. If too many clients try to connect at the same time, the excess clients
will be refusedthe connection isn't automatically retried later.

After the listener starts listening, it must process the client connections within a certain amount of time, or the connection attempts will time out.

If listen() succeeds, the function returns 0; otherwise it returns a negative result and sets the global errno to a descriptive constant. Currently, the
only errno value that listen() uses, other than −1, is EBADF, which means the socket argument is invalid.

The arguments to accept() are the socket token of the listener (socket), a pointer to a sockaddr_in structure cast as a sockaddr structure
(client_interface), and a pointer to an integer that gives the size of the client_interface argument (client_size).

The client_interface structure returns interface information (IP address and port number) of the client that's attempting to connect. See the
bind() function for an examination of the sockaddr_in structure.

The *client_size argument is reset to give the size of client_interface as it's passed back by the function.

The value that accept() returns directly is a token that represents the accept socket. After checking the token value (where a negative result
indicates an error), you must cache the token so you can use it in subsequent send() and recv() calls.

When you're done talking to the client, remember to call closesocket() on the accept socket that accept() returned. This frees a slot in the
listener's acceptance queue, allowing a possibly frustrated client to connect to the listener.

RETURN CODES

Upon failure, listen() and accept() return < 0 and set errno to...

• EBADF.,The socket argument is invalid.

• EINVAL. (accept() only) The listener socket isn't bound.

• EWOULDBLOCK. (accept() only) The acceptance queue is full.

• B_ERROR. All other errors.

 select()

int select(int socket_range, struct fd_set *read_bits, struct fd_set *write_bits,
 struct fd_set *exception_bits, struct timeval *timeout)

The select() function returns information about selected sockets. The socket_range argument tells the function how many sockets to check: It
checks socket numbers up to (socket_range − 1). Traditionally, the socket_range argument is set to 32.

The fd_set structure that types the next three arguments is a 32−bit mask that encodes the sockets that you're interested in; this refines the range of
sockets that was specified in the first argument. You should use the FD_OP() macros to manipulate the structures that you pass in:

• FD_ZERO(set) clears the mask given by set.

• FD_SET(socket, set) adds a socket to the mask.

• FD_CLEAR(socket, set) clears a socket from the mask.

• FD_ISSET(socket, set) returns non−zero if the given socket is already in the mask.

The function passes socket information back to you by resetting the three fd_set arguments. The arguments themselves represent the types of
information that you can check:

 Network Sockets

6

#EBADF
#B_ERROR

• read_bits tells you if a socket is "ready to read." In other words, it tells you if a socket has a in−coming message waiting to be read.

• write_bits tells you if a socket is "ready to write."

• exception_bits tells you if there's an exception pending on the socket.

Currently, only read_bits is implemented. You should pass NULL as the write_bits and exception_bits arguments.

select() doesn't return until at least one of the fd_set−specified sockets is ready for one of the requested operations. To avoid blocking forever,
you can provide a time limit in the final argument, passed as a timeval structure.

In the following example, we check if a given datagram socket has a message waiting to be read. The select() times out after two seconds:

 bool can_read_datagram(int s)
 {
 struct timeval tv;
 struct fd_set fds;

 tv.tv_sec = 2;
 tv.tv_usec = 0;

 /* Initialize (clear) the socket mask. */
 FD_ZERO(&fds);

 /* Set the socket in the mask. */
 FD_SET(s, &fds);
 select(32, &fds, NULL, NULL, &tv);

 /* If the socket is still set, then it>s ready to read. */
 return FD_ISSET(s, &fds);
 }

RETURN CODES

If select() fails, it returns −1; if the function times out, it returns 0. Otherwise (i.e. if any of the selected sockets was found to be ready) it returns 1.

 send() , recv()

ssize_t send(int socket, const void *buf, size_t size, int flags)

ssize_t recv(int socket, void *buf, size_t size, int flags)

These functions are used to send data to a remote socket, and to receive data that was sent by a remote socket. send() and recv() calls must be
complementary: after socket A sends to socket B, socket B needs to call recv() to pick up the data that A sent. send() sends its data and returns
immediately. recv() will block until it has some data to return.

The send() and recv() functions can be called by stream or datagram sockets. However, there are some differences between the way the functions
work when used by these two types of socket:

• For a stream listener and a stream client to transmit messages, the listener must have previously called bind(), listen() , accept(),
and the client must have called connect(). Having been properly connected, the two sockets can send and receive as if they were peers.

For stream sockets, send() and recv() can both block: send() blocks if the amount of data that's sent overwhelms the receiver's
ability to read it, and recv() blocks if there's no message waiting to be read. You can tell these functions to be non−blocking by setting
the sending socket's no−block socket option (see setsockopt()).

• If you want to call send() or recv() through a datagram socket, you must first connect() the socket. In addition, a receiving
datagram socket must also be bound to an interface (through bind()). See the connect() description for more information on what that
function means to a datagram socket.

Datagram sockets never block on send(), but they can block in a recv() call. As with stream sockets, you can set a datagram socket to
be non−blocking (for the recv() , as well as for recvfrom()) through setsockopt().

 The Arguments

The arguments to send() and recv() are:

• socket is, for datagrams and stream client sockets, the local socket token. In other words, when a datagram or stream client wants to send
or receive data, it passes its own socket token as the first argument. The recipient of a send(), or the sender of a recv() is, for these
sockets, already known: It's the socket that's identified by the previous connect() call.

For a stream listener, socket is the "accept socket" that was previously returned by an accept() call. A stream listener can send and
receive data from more than one client at the same time (or, at least, in rapid succession).

• buf is a pointer to the data that's being sent, or is used to hold a copy of the data that was received.

 Network Sockets

7

• size is the allocated size of buf, in bytes.

• flags is currently unused. For now, set it to 0.

RETURN CODES

A successful send() returns the number of bytes that were sent; a successful recv() returns the number of bytes that were received. Upon failure,
the functions return negative numbers and set errno to...

• EWOULDBLOCK. The call would block on a non−blocking socket.

• EINTR. The local socket was interrupted.

• ECONNRESET. The remote socket disappeared (send() only).

• ENOTCONN. The socket isn't connected.

• EBADF. The socket argument is invalid.

• EADDRINUSE. The interface is busy (datagram sockets only).

• B_ERROR. All other errors.

 sendto() , recvfrom()

ssize_t sendto(int socket, const void *buf, size_t size, int flags,
 struct sockaddr *to, int toLen)

ssize_t recvfrom(int socket, void *buf, size_t size, int flags,
 struct sockaddr *from, int *fromLen)

These functions are used by datagram sockets (only) to send and receive messages. The functions encode all the information that's needed to find the
recipient or the sender of the desired message, so you don't need to call connect() before invoking these functions. However, a datagram socket that
wants to receive messages must first call bind() (in order to fix itself to an interface that can be specified in a remote socket's sendto() call).

The four initial arguments to these function are similar to those for send() and recv(); the additional arguments are the interface specifications:

• For sendto(), the to argument is a sockaddr_in structure pointer (cast as a pointer to a sockaddr structure) that specifies the
interface of the remote socket that you're sending to. The toLen argument is the size of the to argument.

• For recvfrom(), the from argument returns the interface for the remote socket that sent the message that recvfrom() received.
*fromLen is set to the size of the from structure. As always, the interface structure is a sockaddr_in cast as a pointer to a sockaddr.

sendto() never blocks. recvfrom(), on the other hand, will block until a message arrives, unless you set the socket to be non−blocking through
the setsockopt() function.

You can broadcast a message to all interfaces that can be found by setting sendto()'s target address to INADDR_BROADCAST.

As an alternative to these functions, you can call connect() on a datagram socket and then call send() and recv() . The connect() call
caches the interface information provided in its arguments, and uses this information the subsequent send() and recv() calls to "fake" the
analogous sendto() and recvfrom() invocations. For sending, the implication is obvious: The target of the send() is the interface supplied in
the connect() . The implication for receiving bears description: when you connect() and then call recv() on a datagram socket, the socket will
only accept messages from the interface given in the connect() call.

You can mix sendto()/recvfrom() calls with send() /recv(). In other words, connecting a datagram socket doesn't prevent you from calling
sendto() and recvfrom().

RETURN CODES

A successful sendto() returns the number of bytes that were sent; a successful recvfrom() returns the number of bytes that were received.
Upon failure, the functions return negative numbers and set errno to...

• EWOULDBLOCK. The call would block on a non−blocking socket.

• EINTR. The local socket was interrupted.

• EBADF. The socket argument is invalid.

• EADDRNOTAVAIL. The specified interface is unrecognized.

• B_ERROR. All other errors.

 setsockopt()

int setsockopt(int socket, int level, int option, const void *data, uint size)

 Network Sockets

8

#EINTR
#EBADF
#B_ERROR
#EINTR
#EBADF
#B_ERROR

setsockopt() lets you set certain options that are associated with a socket. Currently, the Network Kit only recognizes one option: It lets you
declare a socket to be blocking or non−blocking. A blocking socket will block in a recv() or recvfrom() call if there's no data to retrieve.

A blocking socket will block in a send() or sendto() call if the send would overrun the network's ability to keep up with the data.

A non−blocking socket returns immediately, even if it comes back empty−handed or is unable to send the data.

The function's arguments are:

• socket is the socket that you're attempting to affect.

• level is a constant that indicates where the option is enforced. Currently, level should always be SOL_SOCKET.

• option is a constant that represents the option you're interested in. The only option constant that does anything right now is
SO_NONBLOCK. (Two other constantsSO_REUSEADDR and SO_DEBUGare recognized, but they aren't currently implemented.)

• data points to a buffer that's used to toggle or otherwise inform the option. For the SO_NONBLOCK option (and other boolean options), you
fill the buffer with zeroes if you want to turn the option off (the socket will block), and non−zeros if you want to turn it on (the socket won't
block). In the case of a boolean option, a single byte of zero/non−zero will do.

• size is the size of the data buffer.

RETURN CODES

Upon failure, setsockopt() returns a negative number and sets errno to...

• EINTR. The local socket was interrupted.

• EBADF. The socket argument is invalid.

• ENOPROTOOPT. Unknown option.

 Network Sockets

9

#EINTR
#EBADF

 BNetAddress
Derived from: BArchivable

Declared in: be/net/NetAddress.h

Library: libnetapi.so

Allocation: Constructor only

Summary

The BNetAddress class is used to construct and represent network addresses, providing access to them in a variety of formats. Additional functions are
available to convert addresses from one format into another.

 Constructor and Destructor

 BNetAddress()

BNetAddress(const char *hostname = NULL, unsigned short port = 0)

BNetAddress(const sockaddr_in &sa)

BNetAddress(in_addr addr, int port = 0)

BNetAddress(uint32 addr, int port = 0)

BNetAddress(const char *hostname, const char *protocol, const char *service)

BNetAddress(BNetAddress &)

BNetAddress(BMessage *archive)

Sets up the BNetAddress object to refer to the specified address. The address can be specified in a number of ways:

• By hostname and port number. For example, to connect to the HTTP port at www.be.com, you would specify "www.be.com" as the hostname, and
80 for the port number.

• By sockaddr_in structure. This structure contains the network family, port number, and IP address that make up the address.

• By IP address and port number. The IP address can be specified either using an in_addr, or by using a uint32. The IP address must be specified in
network byte order. See the htonl() function.

• By hostname, protocol, and service name. This causes the port to be looked up in the /etc/services file by matching the protocol (typically "tcp" or
"udp") and service name (such as "http" or "ftp") against the entries in the file. See getservbyname() for details on the format of this file.

• By copying an existing BNetAddress.

• By unflattening an archived BNetAddress from a BMessage.

After creating your BNetAddress, you must call InitCheck() to ensure that no errors occurred during setup. You can change the address later by
calling SetTo().

 ~BNetAddress

virtual ~BNetAddress()

A typical destructor.

 Member Functions

 InitCheck()

status_t InitCheck(void) const

10

#BArchivable
NetAddress.h
NetAddress.summary.html
#BMessage

Returns a status_t indicating whether or not the object was successfully instantiated.

RETURN CODES

B_OK. The BNetAddress was constructed without error.

• B_ERROR. An error occurred during construction.

 GetAddr()

status_t GetAddr(char *hostname = NULL, unsigned short *port = NULL) const

status_t GetAddr(struct sockaddr_in &sa) const

status_t GetAddr(in_addr &addr, unsigned short *port = NULL) const

Returns the address represented by the BNetAddress object in the format indicated by the form of the function used.

If you don't care about the hostname (in the first form), you can specify NULL for the hostname argument; if you don't care about the port number,
you can specify NULL for the port argument.

RETURN CODES

B_OK. The address was returned successfully.

• B_ERROR. An error occurred fetching the address information.

 SetTo()

status_t SetTo(const char *hostname, const char *protocol,
 const char *service)

status_t SetTo(const char *hostname = NULL, unsigned short port = 0)

status_t SetTo(const sockaddr_in &sa)

status_t SetTo(in_addr addr, int port = 0)

status_t SetTo(uint32 addr = INADDR_ANY, int port = 0)

Sets the address represented by the BNetAddress object in the format indicated by the form of the function used. These formats are described in the
discussion of the constructor.

RETURN CODES

B_OK. The address was set successfully.

• B_ERROR. An error occurred setting the address information.

•

 BNetAddress

11

#B_OK
#B_ERROR
#B_OK
#B_ERROR
#B_OK
#B_ERROR

 BNetBuffer
Derived from: BArchivable

Declared in: be/net/NutBuffer.h

Library: libnetapi.so

Allocation: Constructor only

Summary

The BNetBuffer class provides an easy way to construct network buffers consisting of any sort of data, for use by the BNetEndpoint class.

Once you've created a BNetBuffer, you can append data to it by using a series of functions designed to add various types of data. For example, to
create a buffer and place the long integer 2 followed by the string "This is a test." in it, you could do this:

 BNetBuffer buffer(512);
 buffer.AppendInt32(2);
 buffer.AppendString("This is a test.");

The AppendInt32() function automatically handles conversion of the value into network byte order, as do all of the AppendXXX() functions for
integer values (16−bit, 32−bit, and 64−bit, signed or unsigned). Likewise, the RemoveXXX() functions peel data out of a buffer, and they too are
endian−aware.

 Constructor and Destructor

 BNetBuffer()

BNetBuffer(size_t size = 0)

BNetBuffer(const BNetBuffer &from)

BNetBuffer(BMessage *archive)

Creates a BNetBuffer. The first form creates a new buffer capable of holding up to size bytes of data. In this case, the buffer begins life empty.

The second form creates a new buffer which is an exact duplicate of the BNetBuffer specified by the from argument, including any data that might
already be in the buffer. The third form reconstructs an archived BNetBuffer.

 ~BNetBuffer

virtual ~BNetEndpoint()

A typical destructor.

 Member Functions

 AppendInt8() , AppendUint8() , AppendInt16() , AppendUint16() , AppendInt32() , AppendUint32() ,
 AppendInt64() , AppendUint64() , AppendFloat() , AppendDouble() , AppendString() , AppendData() ,
 AppendMessage()

status_t AppendInt8(int8 value)

status_t AppendUint8(uint8 value)

status_t AppendInt16(int16 value)

status_t AppendUint16(uint16 value)

12

#BArchivable
NutBuffer.h
NetBuffer.summary.html
#BMessage

status_t AppendInt32(int32 value)

status_t AppendUint32(uint32 value)

status_t AppendInt64(int64 value)

status_t AppendUint64(uint64 value)

status_t AppendFloat(float value)

status_t AppendDouble(double value)

status_t AppendString(const char *string)

status_t AppendData(const void *data, size_t size)

status_t AppendMessage(BMessage &message)

Appends the specified data type to the end of the buffer. Integer values are automatically converted to network byte ordering (but floats and doubles
are not, nor are values inside structures added using AppendData()).

Strings are appended as null−terminated strings.

AppendData() copies size bytes from the buffer pointed at by data.

RETURN CODES

B_OK. The data was appended without error.

• B_ERROR. The data couldn't be appended.

 Data() , Size() , BytesRemaining()

unsigned char *Data(void) const

size_t Size(void) const

size_t BytesRemaining(void) const

Data() returns a pointer to the BNetBuffer's internal data buffer.

Size() returns the number of bytes currently in the buffer.

BytesRemaining() returns the number of unused bytes in the buffer.

 RemoveInt8() , RemoveUint8() , RemoveInt16() , RemoveUint16() , RemoveInt32() , RemoveUint32() ,
 RemoveInt64() , RemoveUint64() , RemoveFloat() , RemoveDouble() , RemoveString() , RemoveData() ,
 RemoveMessage()

status_t RemoveInt8(int8 &value)

status_t RemoveUint8(uint8 &value)

status_t RemoveInt16(int16 &value)

status_t RemoveUint16(uint16 &value)

status_t RemoveInt32(int32 &value)

status_t RemoveUint32(uint32 &value)

status_t RemoveInt64(int64 &value)

 BNetBuffer

13

#BMessage
#B_OK
#B_ERROR

status_t RemoveUint64(uint64 &value)

status_t RemoveFloat(float &value)

status_t RemoveDouble(double &value)

status_t RemoveString(char *string, size_t size)

status_t RemoveData(void *data, size_t size)

status_t RemoveMessage(BMessage &message)

Removes the specified data type from the buffer. Integer values are automatically converted from network byte ordering (but floats and doubles are
not, nor are values inside structures removed using RemoveData()).

Strings are removed as null−terminated strings, up to size bytes. Be sure the string buffer is at least size bytes long.

RemoveData() removes size bytes and copies them into the buffer pointed at by data. Be sure the data buffer is at least size bytes long.

These functions start at the beginning of the buffer. After each item is removed, the next Remove...() call will start at the next byte in the buffer.

RETURN CODES

B_OK. The data was removed without error.

• B_ERROR. The data couldn't be removed.

Size() see Data()

 Operators

 = (assignment)

BNetBuffer &operator =(const BNetBuffer &from)

Copies the BNetBuffer specified by from into the left−side object, thereby duplicating that object. If from is connected, the left−side object will
duplicate and open the same connection. Even the data in the buffer is copied, if there is any.

•

 BNetBuffer

14

#BMessage
#B_OK
#B_ERROR

 BNetDebug
Derived from: (none)

Declared in: be/net/NetDebug.h

Library: libnetapi.so

Allocation: Constructor only

Summary

BNetDebug provides a few functions that let you turn on and off debug output, and dump raw data to stderr in a clean format.

All the member functions are static; instead of creating a BNetDebug object, call them like this:

 BNetDebug::Print("Starting server...");

Debug output is off by default; call BNetDebug::Enable() to enable it.

 Static Functions

 Dump()

static void Dump(const char *data, size_t size, const char *title) const

Dumps size bytes of raw data to stderr. The dump is prefaced by the given title. The text is only output if debug output is currently enabled.

 Enable() , IsEnabled()

static void Enable(bool enable)

static bool IsEnabled(void)

Enable() enables debug output if enable is true, otherwise it disables debug output.

IsEnabled() reports the current state of debug output.

 Print()

static void Print(const char *message)

Prints the specified message to stderr, if debug output is currently enabled.

•

15

NetDebug.h
NetDebug.summary.html
#BNetDebug::Enable()

 BNetEndpoint
Derived from: BArchivable

Declared in: be/net/NetEndpoint.h

Library: libnetapi.so

Allocation: Constructor only

Summary

The BNetEndpoint class represents a network endpoint, which can send and receive data, establish network connections, bind to local addresses, and
listen for and accept new connections.

Rather than replacing the existing network architecture, the BNetEndpoint class provides a C++ wrapper to the standard socket functions. All the same
rules of usage apply, so be sure to review the BSD−like C socket function material.

 Archiving BNetEndpoints
BNetEndpoint objects are archivable. All attributes of the BNetEndpoint are preserved when archived. Upon reinstantiation, the object is duplicated
precisely. This has interesting ramificationsif the BNetEndpoint is connected to a remote system when it's archived, the reinstantiated archive will also
be connected to that system. You can actually archive active connections to restore them later.

Obviously, however, protocol−specific information won't be saved unless you add that data to the archive yourself. For example, if you archive an FTP
connection, then restore the connection from the archive, the working directory or any ongoing downloads won't be restored automatically.

 Constructor and Destructor

 BNetEndpoint()

BNetEndpoint(int protocol = SOCK_STREAM)

BNetEndpoint(const BNetEndpoint &)

BNetEndpoint(BMessage *archive)

Creates a BNetEndpoint representing a network connection endpoint on the local system. After construction, you must call InitCheck() to ensure
that no errors occurred during setup.

The protocol argument lets you specify whether the BNetEndpoint will use a stream socket (SOCK_STREAM) or a datagram socket (SOCK_DGRAM).

By default, I/O is blocking and address reusing is off. You can change these by calling SetNonBlocking() and SetReuseAddr().

 ~BNetEndpoint

virtual ~BNetEndpoint()

A typical destructor.

 Member Functions

Accept() see Listen()

 Bind()

virtual status_t Bind(const BNetAddress &address)

virtual status_t Bind(int port = 0)

Binds the BNetEndpoint to a specific local address. That address can be specified by using a BNetAddress or a simple port number. This selects the

16

#BArchivable
NetEndpoint.h
NetEndpoint.summary.html
#BMessage

port that will handle the local end of the connection.

If your BNetEndpoint is using a stream protocol and is going to be listening for connections, you must call Bind().

If your stream BNetEndpoint is a client, it doesn't have to call Bind() but you can if you want to. There aren't any significant benefits to doing so,
however.

A stream accept BNetEndpoints must not be bound.

Datagram BNetEndpoints that are going to receive data must be bound; datagram BNetEndpoints that will only be sending data don't have to be.
However, if an endpoint will both send and receive, it must be bound.

If you don't specify an address or port number, or specify a port number of 0, Bind() will bind the BNetEndpoint to a random local port. You can
determine which one by calling LocalAddr().

The only way to unbind a BNetEndpoint from an address or port is to close the endpoint.

RETURN CODES

B_OK. The address was successfully bound to.

• B_ERROR. An error occurred.

 Close()

virtual void Close(void)

Closes the connection, if there is one. If there's unread data buffered up, it's disposed of.

 Connect()

virtual status_t Connect(const BNetAddress &address)

virtual status_t Connect(const char *address, int port)

Opens a connection to the specified remote system. The system's address can be specified by either using a BNetAddress or by specifying the IP
address or domain name and port number. For example, to connect to the Megaburger, Inc. web server, your software would call:

 status_t err = myEndpoint−>Connect("www.megaburger.com", 80);
 if (err != B_OK) {
 /* error occurred */
 }
 else {
 /* all is well, connection is open */
 }

RETURN CODES

B_OK. The connection was opened.

• B_ERROR. An error occurred.

 Error() , ErrorStr()

int Error(void) const

char *ErrorStr(void) const

Error() returns the integer error code for the last send or receive error. If you receive a B_ERROR result from a send or receive function, you can
find out the specific error using this function.

ErrorStr() returns a pointer to a text string describing the error; this string isn't yours, so don't try to free() it.

 InitCheck()

 BNetEndpoint

17

#B_OK
#B_ERROR
#B_OK
#B_ERROR
#B_ERROR
#free()

status_t InitCheck(void) const

Returns a status_t indicating whether or not the object was successfully instantiated.

RETURN CODES

B_OK. The BNetEndpoint was constructed without error.

• B_ERROR. An error occurred during construction.

 IsDataPending()

virtual bool IsDataPending(bigtime_t timeout = 0)

Returns true if there's data waiting to be received, otherwise returns false. If you specify a timeout other than 0, the function will block until
either data is available or the timeout period elapses.

 Listen() , Accept()

virtual status_t Listen(int backlog = 5)

virtual BNetEndpoint *Accept(int32 timeout = −1)

Listen() tells the BNetEndpoint to begin listening for incoming connection attempts on its local port. These attempts are queued; up to
backlog attempts can be in the queue at any time. If more attempts are backlogged than that, the later attempts will be rejected until there's room in the
queue.

You can accept an incoming connection attempt by calling Accept(). If there are no connection attempts queued up, this function returns NULL. If
there are connection attempts in the queue, a new BNetEndpoint object is created with the connection between your local port and the remote system
opened, and that BNetEndpoint is returned to you.

The new connection is yours to do with as you please. When you're finished with the connection, you must delete the returned BNetEndpoint.
Typically your listener thread will look something like this:

 long MyListener(void *data) {
 BNetEndpoint endpoint;

 if (endpoint.InitCheck() < B_OK) {
 return −1;
 }

 endpoint.Bind(portNumber); /* bind to the desired port */
 endpoint.Listen(); /* listen for connections */

 while (keepListening) {
 BNetEndpoint *connect = NULL;
 connect = endpoint.Accept();
 if (connect) {
 handle_connection(connect, data); /* call a function do the work */
 delete connect;
 }
 }
 endpoint.Close();
 }

RETURN CODES

B_OK. Success.

• B_ERROR. Failure.

 LocalAddr() , RemoteAddr()

const BNetAddress &LocalAddr(void)

const BNetAddress &RemoteAddr(void)

These functions return a BNetAddress representing the local or remote system on the connection. LocalAddr() returns the address of the local
machine, and RemoteAddr() (amazingly enough) returns the address of the remote system.

 BNetEndpoint

18

#B_OK
#B_ERROR
#B_OK
#B_ERROR

If there isn't a remote connection, RemoteAddr() will return a BNetAddress indicating an IP address of 0.0.0.0.

 Receive() , ReceiveFrom()

virtual int32 Receive(const void *buffer, size_t size, int flags = 0)

virtual int32 Receive(BNetBuffer &buffer, size_t size, int flags = 0)

virtual int32 ReceiveFrom(const void *buffer, size_t size , const BNetAddress &from,
 int flags = 0)

virtual int32 ReceiveFrom(BNetBuffer &buffer, size_t size , const BNetAddress &from,
 int flags = 0)

Receive() receives a buffer of data from the remote end of the connection. If there's no connection established, B_ERROR is returned immediately.
Up to size bytes of data are received.

ReceiveFrom() receives the buffer from the remote system specified by the from BNetAddress. ReceiveFrom() only works if the connection is
using a datagram protocol.

The first form of each function function sends an arbitrary buffer of the specified size, and the second form sends the contents of a BNetBuffer. When
using a BNetBuffer, incoming data is appended to the end of the buffer, so you can use the same buffer in a loop to buffer incoming data in chunks
until the desired number of bytes have been read.

The flags argument, which is passed on to the socket.h recv() or recvfrom() function, is currently unused and must be 0.

When you call these functions in blocking mode (which is the default), they block until there's data available to receive or a timeout occurs. The
timeout period is set by calling SetTimeout() . You can turn on or off blocking by calling SetNonBlocking(). If you're in nonblocking mode
and there's no data waiting, these functions return 0 immediately, indicating that there's no data.

These functions return the number of bytes actually received, or −1 if an error occurred. You can call Error() to get the specific error that occurred.

RemoteAddr() see LocalAddr()

 Send() , SendTo()

virtual int32 Send(const void *buffer, size_t size, int flags = 0)

virtual int32 Send(BNetBuffer &buffer, int flags = 0)

virtual int32 SendTo(const void *buffer, size_t size, const BNetAddress &to,
 int flags = 0)

virtual int32 SendTo(BNetBuffer &buffer , const BNetAddress &to, int flags = 0)

Send() sends a buffer of data to the remote end of the connection. If there's no connection established, B_ERROR is returned immediately. In
addition, if the BNetEndpoint is configured to use a datagram protocol, this function fails unless Connect() has been called, since that function
caches the destination address.

SendTo() sends the buffer to the remote system specified by the to BNetAddress. SendTo() only works if the connection is using a datagram
protocol.

The first form of each function function sends an arbitrary buffer of the specified size, and the second form sends the contents of a BNetBuffer.

The flags argument, which is passed on to the socket.h send() or sendto() function, is currently unused and must be 0.

These functions return the number of bytes actually sent, or −1 if an error occurred. You can call Error() to get the specific error that occurred.

 SetOption() , SetNonBlocking() , SetReuseAddr()

int SetOption(int32 option, int32 level, const void *data, unsigned int dataSize)

int SetNonBlocking(bool enable = true)

int SetReuseAddr(bool enable = true)

 BNetEndpoint

19

#B_ERROR
#B_ERROR

SetOption() lets you set any option for the BNetEndpoint. This provides access to the setsockopt() function of the underlying socket.

SetNonBlocking() controls whether I/O should block or not. If enable is true, the connection will be nonblocking. If enable is false, the
connection will block on I/O calls until the transmission is completed.

SetReuseAddr() controls whether addresses should be reused or not. If enable is true, addresses will be reused. If enable is false, the
connection won't reuse addresses.

These functions return 0 if successful; otherwise they return −1.

 SetProtocol()

status_t SetProtocol(int protocol)

Sets the protocol type for the connection. Possible values for the protocol argument are SOCK_STREAM (to use the stream protocol) or
SOCK_DGRAM (for datagram protocol).

RETURN CODES

B_OK. The protocol was set successfully.

• B_ERROR. An error occurred setting the protocol.

 SetTimeout()

void SetTimeout(bigtime_t timeout)

Sets the timeout for calls to Receive() and ReceiveFrom(). If blocking I/O is in use, and timeout microseconds pass, the function will abort
with an error. By default, there's no timeout. You can specify that you want no timeout by specifying −1.

 Socket()

int Socket(void) const

Returns the actual socket used by the BNetEndpoint for data communications.

 Operators

 = (assignment)

BNetEndpoint &operator =(const BNetEndpoint &from)

Copies the BNetEndpoint specified by from into the left−side object, thereby duplicating that object. If from is connected, the left−side object will
duplicate and open the same connection.

•

 BNetEndpoint

20

#B_OK
#B_ERROR

The Network Kit: Master Index

=

= BNetEndpoint

A

accept() Network Sockets

AppendData() BNetBuffer

AppendDouble() BNetBuffer

AppendFloat() BNetBuffer

AppendInt16() BNetBuffer

AppendInt32() BNetBuffer

AppendInt64() BNetBuffer

AppendInt8() BNetBuffer

AppendMessage() BNetBuffer

AppendString() BNetBuffer

AppendUint16() BNetBuffer

AppendUint32() BNetBuffer

AppendUint64() BNetBuffer

AppendUint8() BNetBuffer

Archiving BNetEndpoints BNetEndpoint

The Arguments Network Sockets

B

Bind() BNetEndpoint

bind() Network Sockets

BytesRemaining() BNetBuffer

C

closesocket() Network Sockets

Connect() BNetEndpoint

connect() Network Sockets

21

Constructor and Destructor BNetAddress

Constructor and Destructor BNetBuffer

Constructor and Destructor BNetEndpoint

D

Dump() BNetDebug

E

Error() BNetEndpoint

ErrorStr() BNetEndpoint

F

Function Summary BNetDebug

Function Summary BNetEndpoint

Functions Network Sockets

G

getpeername() Network Sockets

getsockname() Network Sockets

I

InitCheck() BNetEndpoint

IsDataPending() BNetEndpoint

IsEnabled() BNetDebug

L

listen() Network Sockets

LocalAddr() BNetEndpoint

M

Member Functions BNetBuffer

Member Functions BNetEndpoint

The Network Kit: Master Index

22

#Function%20Summary
#Function%20Summary

N

BNetAddress() BNetAddress

~BNetAddress BNetAddress

BNetBuffer BNetBuffer

BNetBuffer() BNetBuffer

~BNetBuffer BNetBuffer

BNetDebug BNetDebug

BNetDebug BNetDebug

BNetEndpoint BNetEndpoint

BNetEndpoint() BNetEndpoint

~BNetEndpoint BNetEndpoint

Network Sockets Network Sockets

Network Sockets Network Sockets

O

Operators BNetEndpoint

P

R

ReceiveFrom() BNetEndpoint

recv() Network Sockets

recvfrom() Network Sockets

RemoteAddr() BNetEndpoint

RemoveData() BNetBuffer

RemoveDouble() BNetBuffer

RemoveFloat() BNetBuffer

RemoveInt16() BNetBuffer

RemoveInt32() BNetBuffer

RemoveInt64() BNetBuffer

RemoveInt8() BNetBuffer

The Network Kit: Master Index

23

RemoveMessage() BNetBuffer

RemoveString() BNetBuffer

RemoveUint16() BNetBuffer

RemoveUint32() BNetBuffer

RemoveUint64() BNetBuffer

RemoveUint8() BNetBuffer

S

Send() BNetEndpoint

send() Network Sockets

SendTo() BNetEndpoint

sendto() Network Sockets

SetNonBlocking() BNetEndpoint

SetOption() BNetEndpoint

SetProtocol() BNetEndpoint

SetReuseAddr() BNetEndpoint

SetTimeout() BNetEndpoint

SetTo() BNetAddress

setsockopt() Network Sockets

Size() BNetBuffer

The socket() Arguments Network Sockets

Socket() BNetEndpoint

socket() Network Sockets

Sorts of Sockets Network Sockets

Static Functions BNetDebug

The Network Kit: Master Index

24

	The Device Kit - Table of Contents
	 Network Sockets
	 BNetAddress
	 BNetBuffer
	 BNetDebug
	 BNetEndpoint
	The Network Kit: Master Index

