
 System Messages

The Device Kit − Table of Contents

 System Messages ..1

 General Messages ..2

 Data Containers ...16

 File Panel Messages ...17

 Node Monitor Messages ..18

 Reply Messages ..20

Messages: Master Index...21

i

 System Messages
This chapter lists and lightly describes the messages that are defined by Be. The list includes messages that are sent from the system to your
application, messages that your application can create and send to other applications (and servers), and messages that are defined for their formats, but
that you don't literally send anywhere (such as a clipboard message format).

Most messages are listed by their command constants (B_ABOUT_REQUESTED, B_QUIT_REQUESTED, etc.). Where the command constant isn't
specific enough, the message is listed by some other field. For example, every Node Monitor message has the command constant B_NODE_MONITOR,
and is further distinguishedand listed belowby its "opcode" field value (B_ENTRY_REMOVED, B_STAT_CHANGED, etc.). If a message doesn't have a
defined command constant or other descriptive field, it's identified prosaically ("Clipboard Data", for example).

The list presents the messages in alphabetical order (ignoring the leading "B_"). Each message entry looks something like this:

Purpose: Tells you whether the message is meant to be delivered ("Deliverable"), or if it's defined simply for its format ("Format"). A message can
be both: It can be used as a deliverable by one part of the system, and used just for its format in another.

If the message is deliverable, it will describe the following:

Source: The sender of the message. An important point here is whether the message is sent by the system, by your app, or by both. If the "Source:"
line doesn't mention that your app can send the message, then don't send it. Often the source is listed, vaguely, as "the system." This denotes that the
message is sent by one of the basic servers (App Server or Input Server, mainly). Other sources (Node Monitor, Roster Monitor, MIME Monitor) are
identified more precisely. In any case, the identity of the source is provided mainly so you know which ballpark you're inthe exact identity shouldn't
matter to your code.

Target: The target of the message. This is the BHandler object that receives the message, and, if applicable, converts it to a hook function. For
example, the target of a B_VIEW_MOVED message is the view's BWindow, not the BView itself (because the BView never actually sees the
B_VIEW_MOVED messageit only sees the ViewMoved() hook function). The target is often either be_app or a BWindow object, but for some
messages the target is declared by your app (the target of a BControl's invocation message, for example).

Hook: The hook function that the target invokes when the message is received. If this line is missing, the message doesn't map to a hook function.

This is followed by a brief description that tells you the circumstances under which the message is sent, and how your app is expected to behave when
it receives the message. If the description doesn't say what your app is supposed to do, then it doesn't have to actively do anything, but it shouldn't
interfere with the default mechanism.

After the description is a table that lists the message's Be−defined fields. If it doesn't have any fields, the table is excluded. If a field holds an array of
data, the maximum size of the array, if known, is given in brackets after the field name:

 "byte" [3]

In some cases, the array size is the value of some other field. Here, the size of the array in the "argv" field is given by the value of the "argc" field:

 "argv" ["argc"]

1

#BHandler
#BWindow
#BView
#BView
#be_app
#BWindow

 General Messages

 B_ABOUT_REQUESTED

Purpose: Deliverable

Source: The system or your app.

Target: App−defined; typically be_app.

Hook: BApplication::AboutRequested() if the target is be_app.

The message should be assigned to an About... menu item, such that the message is sent when the user clicks the item. Your application is expected to
put up an "About This Application" panel when it receives this message.

 B_ACQUIRE_OVERLAY_LOCK , B_RELEASE_OVERLAY_LOCK

Source: A graphics driver.

Target: The team owning the overlay.

B_ACQUIRE_OVERLAY_LOCK is sent by a graphics driver when an overlay is acquired. B_RELEASE_OVERLAY_LOCK is sent when the overlay is
released.

 B_APP_ACTIVATED

Purpose: Deliverable

Source: The system.

Target: be_app

Hook: BApplication::AppActivated()

Sent when an application becomes active or inactive.

"active" B_BOOL_TYPE true if the app has become active; otherwise false.

 B_ARCHIVED_OBJECT

Purpose: Deliverable and format

Source: A dragged replicant, or your app.

Target: A (remote) application.

Hook: BShelf::CanAcceptReplicantMessage()

As a deliverable: The replicant system uses this message as a deliverable. If you're using BDragger and BShelf objects, the message is created and
delivered for you. You can also simulate a dragged replicant by archiving a view, setting the archive message's command to B_ARCHIVED_OBJECT,
and sending the message to a remote application. If the remote application has a BShelf object, the BShelf will pick up the message (through a
BMessageFilter) and pass it to the hook function.

To create a simulated replicant message, you call Archive() on the view that you want to replicate, and add (at least) the "add_on" field to the
archive message.

See BShelf and BDragger for more information about replicants.

As a format: B_ARCHIVED_OBJECT should be used as the command constant for all archive messages. When you archive an object, the "class"
field is automatically added to the archive message. All other fields must be added by your archiving code. See the BArchivable class for more
information about archiving.

"class" [] B_STRING_TYPE An array of class names that gives the class hierarchy of the archived object.

"add_on" B_STRING_TYPE The signature of the library or application that knows how to create the archived object.

"be:add_on_version" B_INT32_TYPE The version of the add_on.

"be:load_each_time" B_BOOL_TYPE true: The add_on is loaded each time the object is unarchived.
false: The add_on is loaded only if it isn't already loaded.

"be:unload_on_delete" B_BOOL_TYPE Is the add_on unloaded when the unarchived object is deleted?

2

#be_app
#AboutRequested()
#be_app
#be_app
#AppActivated()
#B_BOOL_TYPE
#CanAcceptReplicantMessage()
#BDragger
#BShelf
#BShelf
#BShelf
#Archive()
#BShelf
#BDragger
#BArchivable
#B_STRING_TYPE
#B_STRING_TYPE
#B_INT32_TYPE
#B_BOOL_TYPE
#B_BOOL_TYPE

"shelf_type"
(replicants only;
optional)

B_STRING_TYPE The "type" of shelf that you want to have display the replicant. A shelf's type is its name, as
assigned when it's created.

 B_ARGV_RECEIVED

Source: The system.

Target: be_app

Hook: BApplication::ArgvReceived()

Forwards arguments that (a) the user passes while launching the app from the command line, or (b) are passed to BRoster::Launch(). Most apps
treat command line arguments as filenames that should be opened. If the filename is relative (if it doesn't start with "/"), you should append it to the
"cwd" field to reconstruct the full path.

"argc" B_INT32_TYPE The number of arguments.

"argv" [argc] B_STRING_TYPE The arguments.

"cwd" B_STRING_TYPE The path name of the current working directory.

 B_CANCEL

Purpose: Deliverable

Source: The Application Kit.

Target: Application Server.

Used to cancel an ongoing operation. The Application Kit sends this message to the Application Server to cancel a shutdown if a window refuses to
quit.

 B_CLIPBOARD_CHANGED

Purpose: Deliverable

Source: The Application Server.

Target: Selected BMessenger.

If you've called BClipboard::StartWatching() to monitor a clipboard for changes, this message is sent to the specified BMessenger when the
clipboard changes.

 B_CONTROL_INVOKED

Purpose: Deliverable

Source: A BControl.

Target: Selected BMessenger.

This message is sent to the targeted messenger when a BControl−derived object is invoked.

 B_INPUT_DEVICES_CHANGED

Purpose: Deliverable

Source: The Input Server.

Target: Add−on specified target.

Hook: BInput::Control()

This message is sent by the Input Server to send you notification when a device starts or stops, or when the set of registered devices changes. These
messages are sent only if you've used the watch_input_devices() function to request such notification. The messages are sent to the target
indicated in the function call.

"code" B_INT32_TYPE Operation code for the keyboard device control request being issued. One of:
B_INPUT_DEVICE_ADDED
B_INPUT_DEVICE_STARTED

 General Messages

3

#B_STRING_TYPE
#be_app
#ArgvReceived()
#Launch()
#B_INT32_TYPE
#B_STRING_TYPE
#B_STRING_TYPE
#StartWatching()
#BMessenger
#watch_input_devices()
#B_INT32_TYPE
#B_INPUT_DEVICE_ADDED
#B_INPUT_DEVICE_STARTED

B_INPUT_DEVICE_STOPPED
B_INPUT_DEVICE_REMOVED

"device" B_STRING_TYPE The name of the device. If this field doesn't exist, the device is identified by "type" instead.

"type" B_INT32_TYPE The device type. If this field doesn't exist, the "device" field identifies the device.

"message" B_MESSAGE_TYPE The control message. None of the BeOS standard messages use this field.

 B_INPUT_METHOD_EVENT

Purpose: Deliverable

Source: The Input Server.

Target: Input method add−on's BLooper.

This message is sent by the Input Server to an input method add−on to let it know that a method event has occurred. The message's "be:opcode" field
indicates which event has occurred.

• B_INPUT_METHOD_STARTED

• B_INPUT_METHOD_STOPPED

• B_INPUT_METHOD_CHANGED

• B_INPUT_METHOD_LOCATION_REQUEST

These are discussed in more detail in the Input Server chapter.

 B_KEY_DOWN , B_KEY_UP , B_UNMAPPED_KEY_DOWN , B_UNMAPPED_KEY_UP

Source: The system.

Target: The focus view's BWindow.

Hook: BView::KeyDown() (B_KEY_DOWN)
BView::KeyUp() (B_KEY_UP)
(The ...UNMAPPED... messages don't map to hook functions.)

B_KEY_DOWN is sent when the user presses (or holds down) a key that's mapped to a character; B_KEY_UP is sent when the user releases the key.
B_UNMAPPED_KEY_DOWN and B_UNMAPPED_KEY_UP are sent if the key isn't mapped to a character. This doesn't include modifier keys, which are
reported in the B_MODIFIERS_CHANGED message.

"when" B_INT64_TYPE Event time, in microseconds since 01/01/70

"key" B_INT32_TYPE The code for the physical key that was pressed. See <x> for the key map.

"be:key_repeat"
(B_KEY_DOWN only)B_INT32_TYPE

The "iteration number" of this key down. When the user holds the key down, successive messages
are sent with increasing key repeat values. This field isn't present in the initial event; the first repeat
message (i.e., the second key down message) has a key repeat value of 1.

"modifiers" B_INT32_TYPE The modifier keys that were in effect at the time of the event. See <x> for a list of values.

"states" B_UINT8_TYPE The state of all keys at the time of the event. See <x>.

"byte" [3]
(B_KEY_DOWN and
B_KEY_UP only)

B_INT8_TYPE The UTF8 data that's generated

"bytes"
(B_KEY_DOWN and
B_KEY_UP only)

B_STRING_TYPE The string that's generated. (The string usually contains a single character.)

"raw_char"
(B_KEY_DOWN and
B_KEY_UP only)

B_INT32_TYPE Modifier−independent ASCII code for the character.

 General Messages

4

#B_INPUT_DEVICE_STOPPED
#B_INPUT_DEVICE_REMOVED
#B_STRING_TYPE
#B_INT32_TYPE
#B_MESSAGE_TYPE
#B_INPUT_METHOD_STARTED
#B_INPUT_METHOD_STOPPED
#B_INPUT_METHOD_CHANGED
#B_INPUT_METHOD_LOCATION_REQUEST
#B_INT64_TYPE
#B_INT32_TYPE
#B_INT32_TYPE
#B_INT32_TYPE
#B_UINT8_TYPE
#B_INT8_TYPE
#B_STRING_TYPE
#B_INT32_TYPE

B_KEY_UP see B_KEY_DOWN

 B_KEYBOARD_DEVICE

Purpose: Deliverable

Source: The input server.

Target: A keyboard device add−on.

Hook: BInput::Control()

This message is used by the input server to send a request to a keyboard device add−on.

"code" B_INT32_TYPE

Operation code for the keyboard device control request being issued. One of:
B_KEY_MAP_CHANGED
B_KEY_LOCKS_CHANGED
B_KEY_REPEAT_DELAY_CHANGED
B_KEY_REPEAT_RATE_CHANGED

"device" B_STRING_TYPE The name of the device. If this field doesn't exist, the device is identified by "type" instead.

"type" B_INT32_TYPE The device type. If this field doesn't exist, the "device" field identifies the device.

"message" B_MESSAGE_TYPE The control message for the request. None of the BeOS standard messages use this field.

B_UNMAPPED_KEY_UP see B_KEY_DOWN

 B_MEDIA_BUFFER_CREATED , B_MEDIA_BUFFER_DELETED

Purpose: Deliverable

Source: The media server.

Target: Target specified to BMediaRoster::StartWatching().

Sent to indicate that a media buffer has been created or deleted.

B_MEDIA_BUFFER_CREATED's message has the following fields:

"clone_info" B_RAW_TYPE An area_info structure describing the buffer's location in memory. This is an array, one entry per buffer created.

B_MEDIA_BUFFER_DELETED looks like this:

"media_buffer_id" B_INT32_TYPE The buffer ID number of the buffer being deleted. This is an array, one entry per buffer deleted.

B_MEDIA_BUFFER_DELETED see B_MEDIA_BUFFER_CREATED

B_MEDIA_CONNECTION_BROKEN see B_MEDIA_CONNECTION_MADE

 B_MEDIA_CONNECTION_MADE , B_MEDIA_CONNECTION_BROKEN

Purpose: Deliverable

Source: The media server.

Target: Target specified to BMediaRoster::StartWatching().

Sent to indicate that a connection between media nodes has been made or broken.

 B_MEDIA_FLAVORS_CHANGED

Purpose: Deliverable

Source: The media server.

Target: Target specified to BMediaRoster::StartWatching().

 General Messages

5

#B_INT32_TYPE
#B_KEY_MAP_CHANGED
#B_KEY_LOCKS_CHANGED
#B_KEY_REPEAT_DELAY_CHANGED
#B_KEY_REPEAT_RATE_CHANGED
#B_STRING_TYPE
#B_INT32_TYPE
#B_MESSAGE_TYPE
#StartWatching()
#B_RAW_TYPE
#B_INT32_TYPE
#StartWatching()
#StartWatching()

Sent by the media server to indicate that the flavors supported by a particular add−on have changed.

"be:addon_id" B_INT32_TYPE The add−on ID of the add−on whose flavors have changed

"be:new_count" B_INT32_TYPE How many new flavors have been added.

"be:gone_count" B_INT32_TYPE How many flavors have been removed.

 B_MEDIA_FORMAT_CHANGED

Purpose: Deliverable

Source: The media server.

Target: Target specified to BMediaRoster::StartWatching().

Sent by the media server to indicate that the format used on a particular connection has changed.

"be:source" B_RAW_TYPE A media_source structure describing the source of the connection whose format changed.

"be:destination" B_RAW_TYPE A media_source structure describing the source of the connection whose format changed.

"be:format" B_RAW_TYPE A media_format structure describing the new format.

 B_MEDIA_NODE_CREATED , B_MEDIA_NODE_DELETED

Purpose: Deliverable

Source: The media server.

Target: Target specified to BMediaRoster::StartWatching().

Sent to indicate that a node has been created or deleted in the media system.

"media_node_id" B_INT32_TYPE The ID of the media_node that was created or deleted.

B_MEDIA_NODE_DELETED see B_MEDIA_NODE_CREATED

 B_MEDIA_NODE_STOPPED

Purpose: Deliverable

Source: The media server.

Target: Target specified to BMediaRoster::StartWatching().

Indicates that a media node has stopped.

 B_MEDIA_PARAMETER_CHANGED , B_MEDIA_NEW_PARAMETER_VALUE

Purpose: Deliverable

Source: The media server.

Target: Target specified to BMediaRoster::StartWatching().

Sent by the media server to indicate that the value of a parameter has changed. B_MEDIA_PARAMETER_CHANGED only tells you which parameter
changed (media_node and parameter ID). B_MEDIA_NEW_PARAMTER_VALUE also tells you which parameter changed, and what the new value is.

The B_MEDIA_PARAMETER_CHANGED message looks like this:

"be:node" B_RAW_TYPE A media_node structure indicating which node's parameter web has changed.

"be:parameter" B_INT32_TYPE The ID number of the parameter whose value has changed.

The B_MEDIA_NEW_PARAMETER_VALUE message is:

 General Messages

6

#B_INT32_TYPE
#B_INT32_TYPE
#B_INT32_TYPE
#StartWatching()
#B_RAW_TYPE
#B_RAW_TYPE
#B_RAW_TYPE
#StartWatching()
#B_INT32_TYPE
#StartWatching()
#StartWatching()
#Notification%20Messages
#B_RAW_TYPE
#B_INT32_TYPE

"node" B_RAW_TYPE A media_node structure indicating which node is reporting a changed parameter value.

"parameter" B_INT32_TYPE The parameter ID of the changed parameter.

"when" B_INT64_TYPE The performance time at which the change took effect.

"value" B_RAW_TYPE The parameter's new value.

 B_MEDIA_WEB_CHANGED

Purpose: Deliverable

Source: The media server.

Target: Target specified to BMediaRoster::StartWatching().

Sent by the media server to indicate that a particular node's BParameterWeb has.

"node" B_RAW_TYPE A media_node structure indicating which node's parameter web has changed.

 B_MEDIA_WILDCARD

Purpose: Constant only.

Source: Your application.

Target: The media server.

When calling BMediaRoster::StartWatching() or BMediaRoster::StopWatching(), you can use this constant to match all media
messages. This message has no actual format.

(No Be−defined fields)

 B_MINIMIZE

Source: The system or your app.

Target: The BWindow that's hidden/unhidden.

Hook: BWindow::Minimize()

Sent when the user double−clicks a window's title bar (to hide the window), or selects a window from the DeskBar's window list (to unhide the
window).

"when" B_INT64_TYPE Event time, in microseconds since 01/01/70.

"minimize" B_BOOL_TYPE true if the window is being hidden; false if it's being unhidden.

 B_MODIFIERS_CHANGED

Source: The system.

Target: The focus view's window.

Sent when the user presses or releases a modifier key.

"when" B_INT64_TYPE Event time, in microseconds since 01/01/70

"modifiers" B_INT32_TYPE The current modifier keys. See <x>

"be:old_modifiers" B_INT32_TYPE The previous modifier keys.

"states" B_UINT8_TYPE The state of all keys at the time of the event. See <x>.

 General Messages

7

#B_RAW_TYPE
#B_INT32_TYPE
#B_INT64_TYPE
#B_RAW_TYPE
#StartWatching()
#BParameterWeb
#B_RAW_TYPE
#StartWatching()
#StopWatching()
#BWindow
#Minimize()
#B_INT64_TYPE
#B_BOOL_TYPE
#B_INT64_TYPE
#B_INT32_TYPE
#B_INT32_TYPE
#B_UINT8_TYPE

 B_MOUSE_DOWN

Source: The system.

Target: The BWindow of the view the mouse is pointing to.

Hook: BView::MouseDown()

Sent when the user presses a mouse button. This message is only sent if no other mouse button is already down.

"when" B_INT64_TYPE Event time, in microseconds since 01/01/70

"where" B_POINT_TYPE Mouse location in the view's coordinate system.

"modifiers" B_INT32_TYPE The modifier keys that were in effect at the time of theevent.

"buttons" B_INT32_TYPE

The mouse button that was pressed, one of:
B_PRIMARY_MOUSE_BUTTON
B_SECONDARY_MOUSE_BUTTON
B_TERTIARY_MOUSE_BUTTON

"clicks" B_INT32_TYPE
1 for a single−click, 2 for double−click, 3 for triple−click, and so on. The counter is reset if the time between
clicks exceeds the "Double−click speed" set by the user in the Mouse preferences. Note that the counter is
not reset if the mouse moves between clicks.

 B_MOUSE_MOVED

Source: The system.

Target: The BWindow of the view the mouse is pointing to.

Hook: BView::MouseMoved()

Sent when the user moves the mouse.

"when" B_INT64_TYPE Event time, in microseconds since 01/01/70

"where" B_POINT_TYPE The mouse's new location in window coordinates.

"buttons" B_INT32_TYPE

The mouse buttons that are down. Zero or more of:
B_PRIMARY_MOUSE_BUTTON
B_SECONDARY_MOUSE_BUTTON
B_TERTIARY_MOUSE_BUTTON

 B_MOUSE_UP

Source: The system.

Target: The BWindow of the view the mouse is pointing to.

Hook: BView::MouseUp()

Sent when the user releases a mouse button. It's only sent if no other mouse button remains down.

"when" B_INT64_TYPE Event time, in microseconds since 01/01/70

"where" B_POINT_TYPE Mouse location in the view's coordinate system.

"modifiers" B_INT32_TYPE The modifier keys that were in effect at the time of the event. See <x> for a list of modifier values.

 B_MOUSE_WHEEL_CHANGED

Source: The system.

Target: The BWindow of the view the mouse is pointing to.

Sent when the user moves the mouse wheel (on mice that have them).

 General Messages

8

#BWindow
#B_INT64_TYPE
#B_POINT_TYPE
#B_INT32_TYPE
#B_INT32_TYPE
#B_PRIMARY_MOUSE_BUTTON
#B_INT32_TYPE
#BWindow
#B_INT64_TYPE
#B_POINT_TYPE
#B_INT32_TYPE
#B_PRIMARY_MOUSE_BUTTON
#BWindow
#B_INT64_TYPE
#B_POINT_TYPE
#B_INT32_TYPE
#BWindow

"when" B_INT64_TYPE Event time, in microseconds since 01/01/70

"be:wheel_delta_x" B_FLOAT_TYPE How much the Y value of the wheel has changed.

"be:wheel_delta_y" B_FLOAT_TYPE How much the Y value of the wheel has changed.

The standard mouse driver that comes with BeOS only supports a Y−oriented wheel.

 B_NODE_MONITOR

Source: The Node Monitor.

Target: App−defined.

Sent when a monitored file changes. All Node Monitor messages contain an int32 "opcode" field that tells you what happened (a file was removed,
an attribute changed, etc.). The format of the rest of the message depends on the opcode. The formats are given under individual entries in this
appendix, listed by opcode value:

• B_ENTRY_CREATED

• B_ENTRY_REMOVED

• B_ENTRY_MOVED

• B_STAT_CHANGED

• B_ATTR_CHANGED

• B_DEVICE_MOUNTED

• B_DEVICE_UNMOUNTED

These are discussed in the section "Node Monitor Messages".

 B_OBSERVER_NOTICE_CHANGE

Source: The system.

Target: Application−defined target.

Sent by BHandlers to all targets that have been registered with the BHandler's StartWatching() or StartWatchingAll() function.

"be:observe_change_what"B_INT32_TYPE The "what" code of the message being broadcast.

"be:observe_orig_what" B_INT32_TYPE The original "what" code of the message, before it was altered by the broadcasting mechanism.

The message may have other fields, depending on what the broadcast message is. Messages are sent to targets in response to the
BHandler::SendNotices() function. The logic is:

• Take the message to broadcast and place its what code into the "be:observe_change_orig_what" field.

• Add the "be:observe_change_what" field, which is set to the what code specified by the call to SendNotices().

• Set the message's what code to B_OBSERVER_NOTICE_CHANGE.

The resulting message is then sent to all interested parties.

See also: BHandler::SendNotices() , BHandler::StartWatching()

 B_OPEN_IN_WORKSPACE

Source: The system.

Target: BApplication.

Sent to an application when it's first launched to tell it to open in a specific workspace. The message will be handled during the construction of the
BApplication object.

"be:workspace" B_INT32_TYPE Workspace number into which the application should open.

 General Messages

9

#B_INT64_TYPE
#B_FLOAT_TYPE
#B_FLOAT_TYPE
#Integer%20Types
#StartWatching()
#StartWatchingAll()
#B_INT32_TYPE
#B_INT32_TYPE
#SendNotices()
#StartWatching()
#BApplication
#BApplication
#B_INT32_TYPE

 B_POINTING_DEVICE

Purpose: Deliverable

Source: The input server.

Target: A pointing device add−on.

Hook: BInput::Control()

This message is used by the input server to send a request to a pointing device add−on.

"code" B_INT32_TYPE

Operation code for the pointing device control request being issued. One of:
B_MOUSE_TYPE_CHANGED
B_MOUSE_MAP_CHANGED
B_MOUSE_SPEED_CHANGED
B_CLICK_SPEED_CHANGED
B_MOUSE_ACCELERATION_CHANGED

"device" B_STRING_TYPE The name of the device. If this field doesn't exist, the device is identified by "type" instead.

"type" B_INT32_TYPE The device type. If this field doesn't exist, the "device" field identifies the device.

"message" B_MESSAGE_TYPE The control message for the request. None of the BeOS standard messages use this field.

 B_PRINTER_CHANGED

Source: The Print Server.

Target: Everyone.

Sent whenever the user changes printers. Applications that support printing should watch for this message, and if they receive it, they should suggest
that the user check their page setup the next time they choose to print.

 B_PULSE

Source: The system.

Target: be_app or BWindow object.

Hook: BApplication::Pulse() and BView::Pulse()

Sent at regular intervals, but with no particular intent. You can implement Pulse() to do whatever you want. The message is to the BWindow only if
a BView within the window declares B_PULSE_NEEDED in its constructor flags.

 B_QUERY_UPDATE

Source: The system.

Target: App−defined.

Sent when the results of a live query change: If a new file meets the query requirements, B_ENTRY_CREATED is sent. If a file that previously passed
the query requirements no longer does, B_ENTRY_REMOVED is sent.

 B_QUIT_REQUESTED

Source: The system or your app.

Target: be_app , BWindow closed by the user, or other BLooper object.

Hook: BLooper::QuitRequested().

Automatically sent (a) to be_app when the user types Command+q, and (b) to a BWindow when the user clicks the window's close box.
Applications can also manufacture and send the message themselves. A looper that receives this message is expected to quit, or at least consider
quitting.

"shortcut" B_BOOL_TYPE true if the user typed Command+q.

 B_READY_TO_RUN

Source: The system.

 General Messages

10

#B_INT32_TYPE
#B_MOUSE_TYPE_CHANGED
#B_MOUSE_MAP_CHANGED
#B_MOUSE_SPEED_CHANGED
#B_CLICK_SPEED_CHANGED
#B_STRING_TYPE
#B_INT32_TYPE
#B_MESSAGE_TYPE
#be_app
#BWindow
#Pulse()
#Pulse()
#BWindow
#BView
#B_PULSE_NEEDED
#be_app
#BWindow
#BLooper
#QuitRequested()
#be_app
#BWindow
#B_BOOL_TYPE

Target: be_app

Hook: BApplication::ReadyToRun()

Sent when an application has finished configuring itself and is ready to start running.

(No Be−defined fields)

 B_REFS_RECEIVED

Source: The system or your app.

Target: be_app, or other app−defined target.

Hook: BApplication::RefsReceived()

Automatically sent to be_app when (a) the user double−clicks a file that has a type that's supported by the app, and (b) when the user confirms some
files (or directories) in an Open File panel (the target is be_app by default; it can be changed in BFilePanel::SetTarget()). You can also
create, stuff, and send a B_REFS_RECEIVED message yourself. When it receives this message, an app is expected to open the files that the message
refers to.

"refs" [i] B_REF_TYPE entry_ref items, one for each file or directory.

 A BStatusBar object can be controlled synchronously by calling its Reset() and Update() functions. It can also be controlled asynchronously by
sending it messages corresponding to the two functions; the object calls the function when it receives the message. Each message contains fields for
the arguments passed to the function.

B_RELEASE_OVERLAY_LOCK see B_ACQUIRE_OVERLAY_LOCK

 B_RESET_STATUS_BAR

Source: Your app.

Hook: BStatusBar::Reset()

Target: The BStatusBar you're resetting.

You construct and send this message to a BStatusBar object to tell it to (asynchronously) reset itself. The message also lets you reset the object's labels.
To send the message, invoke BWindow's PostMessage() naming the target BStatusBar as the handler:

 statusBar−>Window()−>PostMessage(theMessage, statusBar);

"label" B_STRING_TYPE The object's new label (NULL−terminated).

"trailing_label" B_STRING_TYPE The object's new trailing label (NULL−terminated)..

 B_SCREEN_CHANGED

Source: The system.

Target: Every BWindow in the screen that changed (even hidden windows).

Hook: BWindow::ScreenChanged()

Sent when the screen's dimensions or color space changesbecause the user played with the Screen preferences app, for example.

"when" B_INT64_TYPE Event time, in microseconds since 01/01/70

"frame" B_RECT_TYPE The screen's dimensions.

"mode" B_INT32_TYPE The screen's color space: B_CMAP8, B_RGB15, B_RGB15, or BRGB32.

 B_SILENT_RELAUNCH

Source: The system.

Target: be_app

Sent to a single−launch application when it's activated by being launched (for example, if the user double−clicks its icon in Tracker).

 General Messages

11

#be_app
#ReadyToRun()
#be_app
#RefsReceived()
#be_app
#be_app
#SetTarget()
#B_REF_TYPE
#entry_ref
#BStatusBar
#Reset()
#Update()
#Reset()
#BStatusBar
#BStatusBar
#PostMessage()
#BStatusBar
#B_STRING_TYPE
#B_STRING_TYPE
#BWindow
#ScreenChanged()
#B_INT64_TYPE
#B_RECT_TYPE
#B_INT32_TYPE
#B_CMAP8
#B_RGB15
#B_RGB15
#be_app

(No Be−defined fields)

 B_SOME_APP_ACTIVATED , B_SOME_APP_LAUNCHED , B_SOME_APP_QUIT

Source: The Roster Monitor.

Target: App−defined.

Sent as apps are launched, activated, or quit. You get these messages by invoking BRoster::StartWatching() passing a one or more of
B_REQUEST_ACTIVATED, B_REQUEST_LAUNCHED, and B_REQUEST_QUIT.

"mime_sig" B_STRING_TYPE The ap signature.

"team" B_INT32_TYPE The app's team id.

"thread" B_INT32_TYPE The id of the app's main thread.

"flags" B_INT32_TYPE The app's app flags (B_SINGLE_LAUNCH, B_BACKGROUND_APP, etc).

"ref" B_REF_TYPE The entry_ref of the app's executable.

 B_UPDATE_STATUS_BAR

Source: Your app.

Hook: BStatusBar::Update()

Target: The BStatusBar you're updating.

You construct and send this message to a BStatusBar object to tell it to (asynchronously) update its progress. To send the message, invoke BWindow's
PostMessage() naming the target BStatusBar as the handler:

 statusBar−>Window()−>PostMessage(theMessage, statusBar);

"delta" B_FLOAT_TYPE An increment to the object's current value.

"text" B_STRING_TYPE The object's new text (NULL−terminated).

"trailing_text" B_STRING_TYPE The object's new trailing text (NULL−terminated)..

 B_VALUE_CHANGED

Source: The system.

Target: The manipulated scrollbar's BWindow.

Hook: BScrollBar::ValueChanged()

Sent when the user plays with a scrollbar.

"when" B_INT64_TYPE Event time, in microseconds since 01/01/70

"value" B_INT32_TYPE The scrollbar's new value.

 B_VIEW_MOVED

Source: The system.

Target: The moved view's BWindow.

Hook: BView::FrameMoved()

Sent when a view's origin (left top corner) changes relative to the origin of its parent. The message isn't sent if the view doesn't have the
B_FRAME_EVENTS flag set.

"when" B_INT64_TYPE Event time, in microseconds since 01/01/70

 General Messages

12

#StartWatching()
#B_STRING_TYPE
#B_INT32_TYPE
#B_INT32_TYPE
#B_INT32_TYPE
#B_SINGLE_LAUNCH
#B_BACKGROUND_APP
#B_REF_TYPE
#entry_ref
#Update()
#BStatusBar
#BStatusBar
#PostMessage()
#BStatusBar
#B_FLOAT_TYPE
#B_STRING_TYPE
#B_STRING_TYPE
#ValueChanged()
#B_INT64_TYPE
#B_INT32_TYPE
#B_FRAME_EVENTS
#B_INT64_TYPE

"where" B_POINT_TYPE The view's new origin in the coordinate system of its parent.

 B_VIEW_RESIZED

Source: The system.

Target: The resized view's BWindow.

Hook: BView::FrameResized()

Sent when the size of the view's frame changes. The message isn't sent if the view doesn't have the B_FRAME_EVENTS flag set.

"when" B_INT64_TYPE Event time, in microseconds since 01/01/70

"width" B_INT32_TYPE The view's new width.

"height" B_INT32_TYPE The view's new height.

"where" B_POINT_TYPE
The view's new origin expressed in the coordinate system of its parent. This field is only included if the view
actually moved while being resized, and can always be ignored: If the view did move, you'll hear about it in a
separate B_VIEW_MOVED BMessage.

 B_WINDOW_ACTIVATED

Source: The system.

Target: The activated/deactivated BWindow.

Hook: BWindow::WindowActivated() and BView::WindowActivated()

Sent just after a window is activated or deactivated. Note that the BWindow invokes WindowActivated() on each of its views.

"when" B_INT64_TYPE Event time, in microseconds since 01/01/70

"active" B_BOOL_TYPE true if the window is now active; false if not.

 B_WINDOW_MOVE_BY

Purpose: Deliverable.

Source: Your application.

Target: The BWindow to be moved.

You can send this message to a window to resize it by the specified deltas.

"data" B_POINT_TYPE The amount by which to move the window's X and Y coordinates.

 B_WINDOW_MOVE_TO

Purpose: Deliverable.

Source: Your application.

Target: The BWindow to be moved.

You can send this message to a window to resize it to the specified size.

"data" B_POINT_TYPE The width and height (in X and Y) to resize the window to.

 B_WINDOW_MOVED

Source: The system.

Target: The BWindow that moved.

 General Messages

13

#B_POINT_TYPE
#B_FRAME_EVENTS
#B_INT64_TYPE
#B_INT32_TYPE
#B_INT32_TYPE
#B_POINT_TYPE
#WindowActivated()
#BWindow
#WindowActivated()
#B_INT64_TYPE
#B_BOOL_TYPE
#BWindow
#B_POINT_TYPE
#BWindow
#B_POINT_TYPE
#BWindow

Hook: BWindow::FrameMoved()

Sent when a window's origin (left top corner) changes within the screen coordinate system.

"when" B_INT64_TYPE Event time, in microseconds since 01/01/70

"where" B_POINT_TYPE The window's new origin in screen coordinates.

 B_WINDOW_RESIZED

Source: The system.

Target: The resized BWindow.

Hook: BWindow::FrameResized()

Sent when the size of the window's frame changes. Note that the "width" and "height" fields measure the window's content areathey don't include the
window border or window tab.

"when" B_INT64_TYPE Event time, in microseconds since 01/01/70

"width" B_INT32_TYPE The width of the window's content area.

"height" B_INT32_TYPE The height of the window's content area.

 B_WORKSPACE_ACTIVATED

Source: The system.

Target: Every BWindow in the activated and deactivated workspaces.

Hook: BWindow::WorkspaceActivated()

Sent when the active workspace changes.

"when" B_INT64_TYPE Event time, in microseconds since 01/01/70

"workspace" B_INT32_TYPE The index of the window's workspace.

"active" B_BOOL_TYPE true if the workspace is now active; false if not.

 B_WORKSPACES_CHANGED

Source: The system.

Target: The BWindow whose set of workspaces changed.

Hook: BWindow::WorkspacesChanged()

Sent when there's a change to the set of workspaces in which a window can appear.

"when" B_INT64_TYPE Event time, in microseconds since 01/01/70

"old" B_INT32_TYPE The window's old workspace set, given as a vector of workspace indices.

"new" B_INT32_TYPE The window's new workspace set, given as a vector of workspace indices.

 B_ZOOM

Source: The system.

Target: The BWindow that was zoomed.

Hook: BWindow::Zoom()

 General Messages

14

#FrameMoved()
#B_INT64_TYPE
#B_POINT_TYPE
#FrameResized()
#B_INT64_TYPE
#B_INT32_TYPE
#B_INT32_TYPE
#BWindow
#WorkspaceActivated()
#B_INT64_TYPE
#B_INT32_TYPE
#B_BOOL_TYPE
#BWindow
#WorkspacesChanged()
#B_INT64_TYPE
#B_INT32_TYPE
#B_INT32_TYPE
#BWindow
#Zoom()

Sent when the user clicks a window's zoom button.

The message has just one data field:

"when" B_INT64_TYPE Event time, in microseconds since 01/01/70

 General Messages

15

#B_INT64_TYPE

 Data Containers
A few constants identify messages as data containers. The system currently uses these constants to mark the containers it constructs for drag−and−drop
operations.

 B_MIME_DATA

This message constant indicates that all the data in the message is identified by MIME type names. The type code of every data field is
B_MIME_TYPE and the name of each field is the MIME type string.

As an example, a BTextView object puts together a B_MIME_DATA message for drag−and−drop operations. The message has the text itself in a field
named "text/plain"; the text_run_array structure that describes the character formats of the text is in a field named
"application/x−vnd.Be−text_run_array".

 B_SIMPLE_DATA

This message is a package for a single data element. If there are multiple data fields in the message, they present the same data in various formats.

For example, when the user drags selected files and directories from a Tracker window, the Tracker packages entry_ref references to them in a
B_SIMPLE_DATA message. The references are in a "refs" array with a type code of B_REF_TYPE. In other words, the message has the same
structure as a B_REFS_RECEIVED message, but a different what constant.

16

#B_MIME_TYPE
#BTextView
#text_run_array
#entry_ref
#B_REF_TYPE

 File Panel Messages
The file panel produces three messages: B_REFS_RECEIVED, B_SAVE_REQUESTED, and B_CANCEL. The first of these was discussed under
"Application Messages" above. It's produced when the user picks files to open from the panel. The other two messages are described below.

 B_SAVE_REQUESTED

The file panel produces this message when the user asks the application to save a document. It has two data fields:

"directory" B_REF_TYPE An entry_ref referring to the directory where the document should be saved.

"name" B_STRING_TYPE The file name under which the document should be saved.

 B_CANCEL

A cancel notification is sent whenever a file panel is hidden. This includes the Cancel button being clicked, the panel being closed, and the panel being
hidden after an open or a save.

"old_what" B_INT32_TYPE
The "previous" what value. This is only useful (and dependable) if you supplied the BFilePanel with your
own BMessage: The what from your message is moved to the "old_what" field. If you didn't supply a
BMessage, you should ignore this field (it could contain garbage).

"source" B_POINTER_TYPE A pointer to the BFilePanel object.

See the BFilePanel class in The Storage Kit chapter for more information.

17

#Application%20Messages
#B_REF_TYPE
#entry_ref
#B_STRING_TYPE
#B_INT32_TYPE
#BFilePanel
#BMessage
#B_POINTER_TYPE
#BFilePanel
#BFilePanel

 Node Monitor Messages
The Node Monitor is a mechanism that lets you watch for changes to a particular file or directory (or "node"). You ask the Node Monitor to start or
stop watching a given node by calling the watch_node() function; you can stop all monitoring through the stop_watching() function.

When you call watch_node(), you tell the Node Monitor which aspects of the node you want to trackchanges to its name, to its size, its attributes,
and so on. Each of these "trackable" elements corresponds to a particular type of message (identified by the message's "opcode" field) that's sent back
to your application when that element actually changes (when the file is renamed, changes size, gains an attribute, and so on).

 B_ENTRY_CREATED

"opcode" B_INT32_TYPE B_ENTRY_CREATED indicates that a new entry was created.

"name" B_STRING_TYPE The name of the new entry.

"directory" B_INT64_TYPE The ino_t (node) number for the directory in which the entry was created.

"device" B_INT32_TYPE The dev_t number of the device on which the new entry resides.

"node" B_INT64_TYPE The ino_t number of the new entry itself. (More accurately, it identifies the node that corresponds to the
entry.)

 B_ENTRY_REMOVED

"opcode" B_INT32_TYPE B_ENTRY_REMOVED indicates that an entry was removed.

"directory" B_INT64_TYPE The ino_t (node) number of the directory from which the entry was removed.

"device" B_INT32_TYPE The dev_t number of the device that the removed node used to live on.

"node" B_INT64_TYPE The ino_t number of the node that was removed.

 B_ENTRY_MOVED

"opcode" B_INT32_TYPE B_ENTRY_MOVED indicates that an existing entry moved from one directory to another.

"name" B_STRING_TYPE The name of the entry that moved.

"from
directory" B_INT64_TYPE The ino_t (node) number of the directory from that the node was removed from.

"to
directory" B_INT64_TYPE The ino_t (node) number of the directory that the node was added to.

"device" B_INT32_TYPE The dev_t number of the device that the moved node entry lives on. (You can't move a file between devices,
so this value will be apply to the file's old and new locations.)

"node" B_INT64_TYPE The ino_t number of the node that was removed.

 B_STAT_CHANGED

"opcode" B_INT32_TYPE B_STAT_CHANGED indicates that some statistic of a node (as recorded in its stat structure) changed.

"node" B_INT64_TYPE The ino_t number of the node.

"device" B_INT32_TYPE The dev_t number of the node's device.

18

#watch_node()
#stop_watching()
#watch_node()
#B_INT32_TYPE
#B_STRING_TYPE
#B_INT64_TYPE
#B_INT32_TYPE
#B_INT64_TYPE
#B_INT32_TYPE
#B_STRING_TYPE
#B_INT64_TYPE
#B_INT64_TYPE
#B_INT32_TYPE
#B_INT64_TYPE

 B_ATTR_CHANGED

"opcode" B_INT32_TYPE B_ATTR_CHANGED indicates that some attribute of a node changed.

"node" B_INT64_TYPE The ino_t number of the node.

"device" B_INT32_TYPE The dev_t number of the node's device.

 B_DEVICE_MOUNTED

"opcode" B_INT32_TYPE B_DEVICE_MOUNTED indicates that a new device (or file system volume) has been mounted.

"new device" B_INT32_TYPE The dev_t number of the newly−mounted device.

"device" B_INT32_TYPE The dev_t number of the device that holds the directory of the new device's mount point.

"directory" B_INT64_TYPE The ino_t (node) number of the directory that acts as the new device's mount point.

 B_DEVICE_UNMOUNTED

"opcode" B_INT32_TYPE B_DEVICE_UNMOUNTED indicates that a device has been unmounted.

"new device" B_INT32_TYPE The dev_t number of the unmounted device.

 Node Monitor Messages

19

 Reply Messages
The following three messages are sent as replies to other messages.

 B_MESSAGE_NOT_UNDERSTOOD

This message doesn't contain any data. The system sends it as a reply to a message that the receiving thread's chain of BHandlers does not recognize.
See MessageReceived() and ResolveSpecifier() in the BHandler class of the Application Kit.

 B_NO_REPLY

This message doesn't contain any data. It's sent as a default reply to another message when the original message is about to be deleted. The default
reply is sent only if a synchronous reply is expected and none has been sent. See the SendReply() function in the BMessage class of the
Application Kit.

 B_REPLY

This constant identifies a message as being a reply to a previous message. The data in the reply depends on the circumstances and, particularly, on the
original message. For replies to scripting messages, it generally has a "result" field with requested data and an "error" field with an error code reporting
the success or failure of the scripted request.

 Scripting Messages

The scripting system defines four generic messages that can operate on the specific properties of an object and two meta−messages that query an
object about the messages it can handle. See "Scripting" in The Application Kit chapter for a full explanation.

 B_COUNT_PROPERTIES

This message requests the number of properties supported by the receiver. It contains no data, but the reply message should contain one field:

"result" B_INT32_TYPE The number of properties supported.

 B_GET_SUPPORTED_SUITES

This message requests the names of all message suites that the receiver supports. It doesn't contain any data, but the message that's sent in reply has
one field:

"suites" B_STRING_TYPE An array of suite names.

A suite is a named set of messages and specifiers. A BHandler supports the suite if it can respond to the messages and resolve the specifiers.

 B_SET_PROPERTY , B_GET_PROPERTY , B_CREATE_PROPERTY , B_DELETE_PROPERTY

These messagesas their names statetarget a particular property under the control of the target handler. They have the following data fields:

"specifiers" B_MESSAGE_TYPE An array of one or more BMessages that specify the targeted property. See AddSpecifier() in the
BMessage class of the Application Kit for details on the contents of a specifier.

"data" variable For B_SET_PROPERTY messages only, the data that should be set. The data type depends on the targeted
property.

A class can choose to respond to these messages, in any combination, for any set of self−declared properties.

20

#MessageReceived()
#ResolveSpecifier()
#BHandler
#SendReply()
#BMessage
#B_INT32_TYPE
#B_STRING_TYPE
#BHandler
#B_MESSAGE_TYPE
#AddSpecifier()
#BMessage

Messages: Master Index

A

B_ACQUIRE_OVERLAY_LOCK General Messages

B_APP_ACTIVATED General Messages

B_ARCHIVED_OBJECT General Messages

B_ARGV_RECEIVED General Messages

B_ATTR_CHANGED Node Monitor Messages

C

B_CANCEL General Messages

B_CLIPBOARD_CHANGED General Messages

B_CONTROL_INVOKED General Messages

B_COUNT_PROPERTIES anon

B_CREATE_PROPERTY anon

D

Data Containers Data Containers

B_DELETE_PROPERTY anon

B_DEVICE_MOUNTED Node Monitor Messages

B_DEVICE_UNMOUNTED Node Monitor Messages

E

B_ENTRY_MOVED Node Monitor Messages

B_ENTRY_REMOVED Node Monitor Messages

F

File Panel Messages File Panel Messages

G

General Messages General Messages

B_GET_PROPERTY anon

21

B_GET_SUPPORTED_SUITES anon

I

B_INPUT_METHOD_EVENT General Messages

K

B_KEY_UP General Messages

B_KEYBOARD_DEVICE General Messages

M

B_MEDIA_BUFFER_CREATED General Messages

B_MEDIA_BUFFER_DELETED General Messages

B_MEDIA_CONNECTION_BROKEN General Messages

B_MEDIA_CONNECTION_MADE General Messages

B_MEDIA_FLAVORS_CHANGED General Messages

B_MEDIA_FORMAT_CHANGED General Messages

B_MEDIA_NEW_PARAMETER_VALUE General Messages

B_MEDIA_NODE_CREATED General Messages

B_MEDIA_NODE_DELETED General Messages

B_MEDIA_NODE_STOPPED General Messages

B_MEDIA_PARAMETER_CHANGED General Messages

B_MEDIA_WEB_CHANGED General Messages

B_MEDIA_WILDCARD General Messages

B_MESSAGE_NOT_UNDERSTOOD Reply Messages

B_MIME_DATA Data Containers

modifier keys General Messages

B_MODIFIERS_CHANGED General Messages

B_MOUSE_DOWN General Messages

B_MOUSE_MOVED General Messages

B_MOUSE_UP General Messages

B_MOUSE_WHEEL_CHANGED General Messages

Messages: Master Index

22

N

Node Monitor Messages Node Monitor Messages

Node Monitor Messages Node Monitor Messages

B_NODE_MONITOR General Messages

O

B_OPEN_IN_WORKSPACE General Messages

P

B_POINTING_DEVICE General Messages

B_PRINTER_CHANGED General Messages

Q

B_QUIT_REQUESTED General Messages

R

B_READY_TO_RUN General Messages

B_REFS_RECEIVED General Messages

B_RELEASE_OVERLAY_LOCK General Messages

Reply Messages Reply Messages

Reply Messages Reply Messages

B_RESET_STATUS_BAR General Messages

S

B_SCREEN_CHANGED General Messages

Scripting Messages anon

B_SET_PROPERTY anon

B_SILENT_RELAUNCH General Messages

B_SIMPLE_DATA Data Containers

B_SOME_APP_ACTIVATED General Messages

B_SOME_APP_LAUNCHED General Messages

Messages: Master Index

23

B_SOME_APP_QUIT General Messages

B_STAT_CHANGED Node Monitor Messages

System Messages System Messages

System Messages System Messages

U

B_UNMAPPED_KEY_UP General Messages

B_UPDATE_STATUS_BAR General Messages

V

B_VIEW_MOVED General Messages

B_VIEW_RESIZED General Messages

W

B_WINDOW_MOVE_BY General Messages

B_WINDOW_MOVE_TO General Messages

B_WINDOW_MOVED General Messages

B_WINDOW_RESIZED General Messages

B_WORKSPACE_ACTIVATED General Messages

B_WORKSPACES_CHANGED General Messages

Z

Messages: Master Index

24

	The Device Kit - Table of Contents
	 System Messages
	 General Messages
	 Data Containers
	 File Panel Messages
	 Node Monitor Messages
	 Reply Messages
	Messages: Master Index

