
 The Mail Kit

The Device Kit − Table of Contents

 The Mail Kit ...1

 The Mail Daemon ..5

 BMailMessage ..10

The Mail Kit: Master Index..13

i

 The Mail Kit
The Mail Kit provides Internet e−mail messaging services. These services include:

• Configuration of the user's mail accounts.

• Sending messages using the Simple Mail Transfer Protocol (SMTP).

• Receiving messages via the Post Office Protocol (POP).

• Automatic, timed sending and receiving of messages.

• Encoding and decoding base−64 encoded data.

An assortment of global C functions are provided by the Mail Kit to configure the mail daemon and process base−64 data. See "The Mail Daemon" for
information on how to use these functions.

Outgoing mail messages are constructed and sent using the BMailMessage class.

 Mail Message Files
Every mail message is stored in an individual file with attached attributes that describe the message in detail; you can query the file system to obtain
information about the sender, subject, and receiver of the message, among other things. See "Querying Mail Messages" below for more detailed
information and an example program.

Every message the user writes is saved in a file until it's sent by the mail daemon (and may or may not be deleted after being sent). Likewise, messages
that the mail daemon has retrieved are also stored in files on a local disk.

The process of sending a mail message works something like this:

• The user writes a new mail message and chooses the mail writing program's "Send" option.

• The mail writing program creates a BMailMessage object and configures it based on the user's inputs by setting the "To," "Subject," and
other header fields appropriately, and by storing the message content into the BMailMessage.

• The program then calls the BMailMessage object's Send() function to tell the mail daemon to send the message.

• The mail daemon creates a disk file that contains the message. The message content is stored in the file itself, and attributes are created to
contain the "To," "Subject," and other relevant header fields. See "Querying Mail Messages" for more information. The message's status
attribute is set to "New".

• The next time the mail daemon's check_for_mail() function is called (either automatically or explicitly), the daemon sends the
message via SMTP, then changes the message's status attribute to "Sent". This is done for all mail messages whose status is "Pending".

After sending outgoing messages, the mail daemon will also check to see if any incoming mail is waiting to be retrieved. If there is, it proceeds
something like this:

• The mail daemon fetches the first message from the mail server via POP.

• The daemon creates a new mail message file, and the message is written into the file. The file contains the Internet headers, message
content, and all enclosures (if any).

• The mail daemon scans the message and adds attributes to the message file for each of the header fields, as well as a couple of extra
attributes. These are described in detail in "Querying Mail Messages" below.

• The daemon continues reading mail messages from the mail server until there aren't any left.

 Querying Mail Messages
The Mail Kit takes full advantage of the BeOS attribute and query system. Each message received is parsed by the mail daemon and important
information about it is converted into a defined collection of attributes attached to the file. This makes it extremely easy to create applications that
search for messages meeting specific parameters. In an example to follow shortly, we'll create a program that lists all unread messages.

Once the mail daemon has received a message and saved it to disk, any application can query the file system to locate messages that meet certain
parameters, then read the attributes and message content to present information about that message to the user.

The following attributes are provided by the Mail Kit:

B_MAIL_ATTR_NAME MAIL:name Name of the mail file.

B_MAIL_ATTR_STATUS MAIL:status Message status.

B_MAIL_ATTR_PRIOIRITY MAIL:priority "Priority" field value.

B_MAIL_ATTR_TO MAIL:to "To" field value.

B_MAIL_ATTR_CC MAIL:cc "Cc" field value.

1

B_MAIL_ATTR_FROM MAIL:from "From" field value.

B_MAIL_ATTR_SUBJECT MAIL:subject "Subject" field value.

B_MAIL_ATTR_REPLY MAIL:reply "Reply−to" field value.

B_MAIL_ATTR_WHEN MAIL:when "When" field value.

B_MAIL_ATTR_FLAGS MAIL:flags Message flags.

B_MAIL_ATTR_RECIPIENTS MAIL:recipients List of message recipients.

B_MAIL_ATTR_MIME MAIL:mime The MIME version used.

B_MAIL_ATTR_HEADER MAIL:header_length Length of the message header.

B_MAIL_ATTR_CONTENT MAIL:content_length Length of the message content.

B_MAIL_ATTR_NAME is a string that identifies the name of the sender.

B_MAIL_ATTR_STATUS is a string that identifies the status of the message. Possible values are:

"Error" An error occurred trying to send the message.

"New" The message has not been read yet.

"Pending" The message has not been sent yet.

"Read" The message has been read.

"Sent" The message has been sent.

B_MAIL_ATTR_PRIORITY is a string that contains the value of the Priority field in the message.

B_MAIL_ATTR_TO, B_MAIL_ATTR_FROM, and B_MAIL_ATTR_REPLY are strings that contain the primary recipient's e−mail address, the
sender's e−mail address, and the sender's reply−to address.

B_MAIL_ATTR_CC contains the addresses to whom the message is carbon copied.

B_MAIL_ATTR_SUBJECT is a string containing the subject of the message.

B_MAIL_ATTR_WHEN is a BeOS time field (B_TIME_TYPE) containing the message's "When" field.

B_MAIL_ATTR_FLAGS contains 32−bit integer (int32) flags which can be any combination of the following values:

B_MAIL_PENDING Message is waiting to be sent.

B_MAIL_SENT Message has been sent.

B_MAIL_SAVE Mail will be saved after being sent.

The B_MAIL_ATTR_FLAGS attribute is BeOS−specific.

B_MAIL_ATTR_RECIPIENTS contains a list of all recipients of the message (primary, cc, and bcc), but is only valid for outgoing messages (this
attribute doesn't exist on incoming messages).

B_MAIL_ATTR_MIME contains a string that defines the version number of the MIME specification used to transmit any enclosures attached to the
file. This attribute is only present if the file has one or more enclosures.

B_MAIL_ATTR_HEADER and B_MAIL_ATTR_CONTENT contain the lengths, in bytes, of the header and content portions of the message. They're
both int32 type data.

The following attributes are indexed:

B_MAIL_ATTR_NAME

 The Mail Kit

2

#B_TIME_TYPE
#Integer%20Types

B_MAIL_ATTR_STATUS
B_MAIL_ATTR_PRIORITY

B_MAIL_ATTR_TO
B_MAIL_ATTR_CC
B_MAIL_ATTR_FROM
B_MAIL_ATTR_SUBJECT

B_MAIL_ATTR_REPLY
B_MAIL_ATTR_WHEN
B_MAIL_ATTR_FLAGS

The headers, the contents of the messag,e and the enclosures (in base−64 encoded form) can all be found in the file itself and can be read using a
BFile object. See "The Storage Kit" in the for further information on reading files.

 Queries and Mail Messages

Now that you know what attributes are available on mail message files, and which attributes are indexed, you can consider all the clever things you can
use them for. Let's look at an example program that, from a Terminal window, lets you see a list of the unread mail you have.

 void main(void) {
 BQuery query;
 BNode node;
 BVolume vol;
 BVolumeRoster vroster;
 entry_ref ref;
 char buf[256];
 int32 message_count = 0;

 vroster.GetBootVolume(&vol);
 query.SetVolume(&vol);

The program begins by establishing needed variables, then using a BVolumeRoster to set the query's search volume to the boot disk. This is covered in
more detail in the Storage Kit chapter.

 if (query.SetPredicate("MAIL:status = New") != B_OK) {
 printf("Error: can>t set query predicate.n");
 return;
 }

Then the query is configured to search for new mail. New messages can be identified by the B_MAIL_ATTR_STATUS attribute (called
"MAIL:status") having a string value of "New". If an error occurs, the program prints an error end returns.

 if (query.Fetch() != B_OK) {
 printf("Error: new mail query failed.n");
 return;
 }

The query is told to fetch. Again, if this fails, an error message is displayed and the program returns.

 while (query.GetNextRef(&ref) == B_OK) {
 message_count++; // Increment message counter

The loop scanning through the fetched new messages begins by incrementing the counter of new messages received.

 if (node.SetTo(&ref) != B_OK) {
 printf("Error: error scanning new messages.n");
 return;
 }

Then a BNode is set to reference the message file. If this fails, the program displays an error message and quits.

 buf[0] = >0>; // If error, use empty string
 node.ReadAttr(B_MAIL_ATTR_FROM, B_STRING_TYPE, 0, buf, 255);
 buf[20] = >0>; // Truncate to 20 characters
 printf("%3d From: %−20s", message_count, buf);

The buffer we're using the receive the attribute values is initialized to an empty string, then we call BNode's ReadAttr() function to read the
B_MAIL_ATTR_FROM attribute into the buffer. We then truncate the read string to 20 characters for display purposes (to make it fit into the table
we're outputting) and print the message number and sender information.

 buf[0] = >0>; // If error, use empty string
 node.ReadAttr(B_MAIL_ATTR_SUBJECT, B_STRING_TYPE, 0, buf, 255);
 buf[40] = >0>; // Truncate to 40 characters
 printf(" Sub: %sn", buf);
 }

The buffer is reset to an empty string and the B_MAIL_ATTR_SUBJECT attribute is read into it. This string is truncated to 40 characters, then printed.

This loop continues until no more new messages are found; this is detected when GetNextRef() returns an error.

 if (message_count) {
 printf("%d new messages.n", message_count);
 }
 else {
 printf("No new messages.n");
 }

 The Mail Kit

3

#BFile
#BVolumeRoster
#BNode
#ReadAttr()
#GetNextRef()

 }

Finally, the number of new messages is printed. If there aren't any messages, we very politely print "No new messages." rather than "0 new messages,"
for a little added panache.

This simple example demonstrates how you can use the attributes provided by the Mail Kit to create mail message reading applications. The message
body and attachments are stored within the file itself, and can be read using the functions described in the BFile section in the Storage Kit chapter of
the "Be Developer's Guide."

 The E−mail File Type
The mail daemon ensures, when it's first launched at system boot time, that the BeOS File Type database includes an entry for e−mail files. E−mail
files have the MIME string "text/x−email", which is represented by the constant B_MAIL_TYPE.

The E−mail entry in the File Type database includes a list of the attributes on which you can search. You can look up this information using the
BMimeType class's GetAttrInfo() function:

 BMimeType mime;
 BMessage message;

 mime.SetTo(B_MAIL_TYPE);
 mime.GetAttrInfo(&message);

After running this code, the message contains the description of the attributes available on e−mail files. The message has three useful arrays of items:

"attr:public_name" The user−readable name of the attribute.

"attr:name" The attribute name used for BNode and fs_attr_* calls.

"attr:type" The type of data the attribute contains.

You can examine the items in each of these arrays in the message to get useful information about the attributes you can reference on the e−mail files.
For example:

 printf("Public name: %sn", FindString("attr:public_name", 1));
 printf("Name: %sn", FindString("attr:name", 1));

This code will print the public name and the attribute name of the second attribute registered in the File Type database entry for e−mail files. In the
current implementation of the Mail Kit, this would print:

 Public name: Subject
 Name: MAIL:subject

The number of (and order of) attributes in the database entry might change in the futureand that's where the File Type database comes in handy. If, a
year from now, Be adds more attributes to e−mail files, your File Type database−savvy application won't have to be updated to support them.

At this time, the File Type database has attribute information records for each of the following attributes:

B_MAIL_ATTR_NAME
B_MAIL_ATTR_STATUS
B_MAIL_ATTR_PRIORITY

B_MAIL_ATTR_TO
B_MAIL_ATTR_FROM
B_MAIL_ATTR_SUBJECT

B_MAIL_ATTR_REPLY
B_MAIL_ATTR_WHEN

You can obtain information on these attributes, their formats, and their user−readable names by looping through the arrays in the message until the
BMessage:Find...() function returns NULL or B_BAD_INDEX.

For more information on the BMimeType class and the File Type database, see BMimeType in The Storage Kit.

 The Mail Kit

4

#BFile
#BMimeType
#GetAttrInfo()
#BNode
#B_BAD_INDEX
#BMimeType
#BMimeType

 The Mail Daemon
Derived from: none

Declared in: be/kit/mail/E−mail.h

Library: libmail.so

Every computer running the BeOS has a mail daemon; this is a local process that's responsible for sending e−mail to and receiving e−mail from a mail
server. The mail server that the daemon talks to is a networking application that's either part of your Internet Service Provider's services, or that's
running on a local "mail repository" machine.

The functions described in this section tell you how to manage the mail daemon's connection with the mail serverhow to tell the daemon which mail
server to communicate with, how to tell the mail daemon to send and retrieve e−mail, how to automate mail retrieval, and so forth.

Many of the functions described here are user−accessible through the E−mail preference application. These functions should generally not be used; the
settings they control belong to the user, and your application should usually avoid changing the user's settings. The only legitimate reason to use these
configuration setting functions is if you want to build your own E−mail preference application.

The other functions, such as forward_mail() , check_for_mail() , encode_base64() , and decode_base64(), might be legitimately
used by your e−mail program.

The architecture of an e−mail message isn't discussed here; for that information, see "Mail Messages (BMailMessage)."

 The Mail Daemon and the Mail Server

The mail daemon can talk to two different kinds of mail server:

• The Post Office Protocol ("POP") server manages individual mail accounts. When the BeOS mail daemon wants to retrieve mail that's
been sent to a user, it must tell the mail server which POP accouant it's retrieving mail for.

• The Simple Mail Transfer Protocol ("SMTP") server manages mail that's being sent out onto the network. Messages sent through an
SMTP server will eventually find their way to a POP server to be received by the destination user.

The POP and the SMTP servers are identified by their hosts' names (in other words, the names of the machines on which the servers are running). The
mail daemon can only talk to one POP and one SMTP server at a time, but can talk to the two of them simultaneously. Usuallybut not alwaysthe POP
and SMTP servers reside on the same machine, and so are identified by the same name.

To set the identities of the POP host, you fill in the fields of a mail_pop_account structure and pass the structure to the
set_pop_account() function. As the name of the structure implies, mail_pop_account encodes more than just the names of the server's host.
It also identifies a specific user's POP mail account; the complete definition of the structure is this:

 typedef struct
 {
 char pop_name[B_MAX_USER_NAME_LENGTH];
 char pop_password[B_MAX_USER_NAME_LENGTH];
 char pop_host[B_MAX_HOST_NAME_LENGTH];
 char real_name[128];
 char reply_to[128];
 int32 days;
 int32 interval;
 int32 begin_time;
 int32 end_time;
 } mail_pop_account;

The pop_name, pop_password, and pop_host fields in the mail_pop_account structure represent the username, password, and POP server
host of the e−mail user. The real_name is the user's real name, and reply_to is the e−mail address to which replies should be sent.

The days field can contain any of the following flags to specify which days of the week the mail daemon should automatically check mail for the
described account:

B_CHECK_NEVER Don't automatically check the account's mail.

B_CHECK_WEEKDAYS Check the mail only on weekdays.

B_CHECK_DAILY Check the mail every day.

B_CHECK_CONTINUOUSLY Check continuously every day.

The interval specifies how many seconds apart each e−mail retrieval should be, and the begin_time and end_time specify the time of day (in
seconds) that automatic retrieval should begin and end.

The SMTP server can be selected by calling set_smtp_host(), passing in a pointer to the SMTP host's name.

 Sending and Retrieving Mail

Messages that are retrieved (from the mail server) by the mail daemon are stored as individual files on the user's hard disk, from whence they are
plucked and displayed by a mail−reading application (a "mail reader"; Be supplies a simple mail reader called BeMail). Similarly, messages that the
user composes (in a mail composition application) and sends are stored as individual files until the mail daemon comes along and passes them on to
the mail server.

5

E-mail.h

Sending and retrieving mail is the mail daemon's most important function. Both actions (server−to−database and database−to−server transmission) are
performed through the check_for_mail() function.

The BMailMessage class provides a convenient means for creating and sending new mail messages; visit the section on that class for further
information and a simple example.

Mail that has been retrieved by the mail daemon can be identified and queried using the mail attributes defined by the Mail Kit. By using the
BQuery class, you can scan all newly−received mail messages and parse the message file to present each message to the user. For a more in−depth
discussion of the mail attributes and how to use them to your benefit, read "Querying Mail Messages."

 Other Mail Daemon Features

The other mail structures and functions define the other features that are provided by the mail daemon. These features are:

• Mail notification. The mail_notification structure (passed through the set_mail_notification() function) lets you tell the
daemon how you would like it to tap you on the shoulder when it has new mail for you to read. Would you like it to display an alert panel?
Squawk at you? Both? This can be configured by the user in the E−mail preference application.

• Mail forwarding . The forward_mail() function lets you ask the Mail Kit to forward a message to one or more other accounts.

• Base−64 encoding and decoding. The encode_base64() and decode_base64() functions let you easily handle ASCII−encoded
file attachments.

 Functions

 check_for_mail()

status_t check_for_mail(int32 *incoming_count = NULL)

Sends and retrieves mail. More specifically, this function asks the mail daemon to retrieve incoming messages from the POP server and send any
queued outgoing messages to the SMTP server. The number of POP messages that were retrieved are stored in the variable pointed to by
incoming_count. If you specify NULL for incoming_count, check_for_mail() won't return the number of messages retrieved. You should
specify NULL unless you really want to know how many messages were retrieved, since requesting this information could potentially slow down the
retrieval process.

If all is well in the mail world, this function returns B_OK; otherwise, it returns a highly useful result code.

RETURN CODES

• B_OK. Mail was sent and retrieved without incident.

• B_MAIL_NO_DAEMON. The mail daemon isn't running.

• B_MAIL_UNKNOWN_USER. The POP server doesn't recognize the user name.

• B_MAIL_WRONG_PASSWORD. The POP server doesn't recognize the password.

• B_MAIL_UNKNOWN_HOST. The POP or SMTP server can't be found.

• B_MAIL_ACCESS_ERROR. The connection to the POP or SMTP server failed.

 count_pop_accounts()

int32 count_pop_accounts(void)

Returns the number of POP accounts that have been configured.

The mail daemon currently supports only one POP account, so this function will always return 1. You shouldn't assume
there will only be one POP account, though, as this will probably change in the future.

 decode_base64()

 The Mail Daemon

6

#BQuery
#B_OK
#B_OK
#B_MAIL_NO_DAEMON
#B_MAIL_UNKNOWN_USER
#B_MAIL_WRONG_PASSWORD
#B_MAIL_UNKNOWN_HOST
#B_MAIL_ACCESS_ERROR

ssize_t decode_base64(char *out, char *in, off_t length, bool replace_cr = false)

Decodes the base−64 data pointed to by in, which is length bytes long, and writes the decoded output into the buffer pointed to by out. If
replace_cr is true, carriage return characters in the output are converted into newlines, otherwise the data is returned in its original, unaltered, form.

You would typically specify replace_cr as true if you're decoding an ASCII text document, and as false if decoding a binary file.

This function returns the size of the output data that's been stored in the out buffer.

You must be certain, in advance, that the output buffer is large enough to hold the decoded data, or this function will do
bad things.

 encode_base64()

ssize_t encode_base64(char *out, char *in, off_t length)

Encodes the data pointed to by in, which is length bytes long, and writes the base−64 encoded output into the buffer pointed to by out.

This function returns the size of the output data that's been stored in the out buffer.

You must be certain, in advance, that the output buffer is large enough to hold the encoded data, or this function will do
bad things.

 forward_mail()

status_t forward_mail(entry_ref *message_ref, const char *recipients,
 bool now = true)

Forwards the mail message specified by message_ref to the list of users given by recipients. The list of user names specified in recipients must be
separated by commas and/or whitespace, and must be null−terminated.

If the now parameter is true, the messages will be sent immediately; if false, the message will be queued up to be sent the next time
check_for_mail() is called, or the next time the mail daemon performs an automatic mail check.

RETURN CODES

• B_OK. The message was forwarded without error.

• B_MAIL_NO_RECIPIENT. No valid recipients were specified.

• Errors returned by send_queued_mail(), if now is true.

 get_mail_notification() , set_mail_notification()

status_t get_mail_notification(mail_notification *notification_settings)

status_t set_mail_notification(mail_notification *notification_settings,
 bool save = true)

get_mail_notification() fills the specified mail_notification structure with information describing how the user is currently being
notified of received e−mail. There are two possible notification signals: the mail alert panel and the system beep. The
mail_notification structure looks like this:

 typedef struct
 {
 bool alert;

 The Mail Daemon

7

#B_OK
#B_MAIL_NO_RECIPIENT

 bool beep;
 } mail_notification;

get_mail_notification() always returns B_OK. If the current settings can't be checked (for example, if the user has never configured mail),
alert will be returned as the default value of false, and beep will be true.

set_mail_notification() accepts a pointer to a mail_notification structure and configures the system to report incoming mail using
the methods specified therein. If the save argument is true, the change is set as the new default and will be remembered when the computer is shut
down. If false, the change is temporary.

RETURN CODES

• B_OK. The notification was successfully set or retrieved.

• B_NO_REPLY. The mail daemon didn't respond to the request.

 get_pop_account() , set_pop_account()

status_t get_pop_account(mail_pop_account *account_info, int32 index = 0)

status_t set_pop_account(mail_pop_account *account_info, int32 index = 0)

Get and set the specified POP account's information. The mail_pop_account structure is defined as follows:

 typedef struct
 {
 char pop_name[B_MAX_USER_NAME_LENGTH];
 char pop_password[B_MAX_USER_NAME_LENGTH];
 char pop_host[B_MAX_HOST_NAME_LENGTH];
 char real_name[128];
 char reply_to[128];
 int32 days;
 int32 interval;
 int32 begin_time;
 int32 end_time;
 } mail_pop_account;

The pop_name, pop_password, and pop_host fields in the mail_pop_account structure represent the username, password, and POP server
host of the e−mail user. The real_name is the user's real name, and reply_to is the e−mail address to which replies should be sent.

The days field can contain any of the following flags to specify which days of the week the mail daemon should automatically check mail for the
described account:

B_CHECK_NEVER Don't automatically check the account's mail.

B_CHECK_WEEKDAYS Check the mail only on weekdays.

B_CHECK_DAILY Check the mail every day.

B_CHECK_CONTINUOUSLY Check continuously every day.

The interval specifies how many seconds apart each e−mail retrieval should be, and the begin_time and end_time specify the time of day (in
seconds) that automatic retrieval should begin and end. If begin_time and end_time are the same, the daemon checks mail round−the−clock.

Eventually these functions will support multiple POP accounts; at this time, the Mail Kit only supports one POP account,
so you must use an index of 0. Any other index will result in a B_BAD_INDEX error.

get_pop_account() fills the specified mail_pop_account structure with the information on the POP account, and
set_pop_account() takes the information in the buffer and saves it as the new default.

RETURN CODES

• B_OK. The notification was successfully set or retrieved.

• B_BAD_INDEX. An index other than 0 was specified.

• B_NO_REPLY. The mail daemon didn't reply to the request.

 The Mail Daemon

8

#B_OK
#B_OK
#B_NO_REPLY
#B_BAD_INDEX
#B_OK
#B_BAD_INDEX
#B_NO_REPLY

 get_smtp_host() , set_smtp_host()

status_t get_smtp_host(char *smtp_host)

status_t set_smtp_host(char *smtp_host, bool save = true)

get_smtp_host() returns in the buffer pointed to by smtp_host the name of the SMTP host as currently configured. The buffer should be at lest
B_MAX_HOST_NAME_LENGTH bytes long.

set_smtp_host() sets the SMTP host through which mail will be sent in the future to the specified host. If save is true, the new setting
becomes the default and will persist through a reboot of the computer; otherwise, the change is only temporary.

RETURN CODES

• B_OK. The notification was successfully set or retrieved.

• B_NO_REPLY. The mail daemon didn't respond to the request.

 send_queued_mail()

status_t send_queued_mail(void)

Tells the mail daemon to send all pending outgoing mail.

RETURN CODES

• B_OK. Mail transfer intitiated successfully.

• Errors from BMessage::SendMessage().

 The Mail Daemon

9

#B_OK
#B_NO_REPLY
#TempoChange(),SprayTempoChange()
#B_OK
#SendMessage()

 BMailMessage
Derived from: none

Declared in: be/kit/mail/E−mail.h

Library: libmail.so

Summary

The BMailMessage class provides an easy way to send e−mail messages. If you want to do it the hard way, look up the SMTP RFC and start plodding
your way through the Network Kit documentation. You'll get it working one of these days.

Or you can sail right on through and be sending e−mail from your own applications in a matter of minutes using your friend, the BMailMessage.

 Constructing a Mail Message

To send an e−mail, you simply construct a new BMailMessage object, add a "To" header field, add the content, and send the message on its way. For
example:

 BMailMessage *mail;
 char *message;

 mail = new BMailMessage();
 mail−>AddHeaderField(B_MAIL_TO, "bob@uncle.com");
 mail−>AddHeaderField(B_MAIL_SUBJECT, "Hi");
 message = "Hi, Uncle Bob!";
 mail−>AddContent(message, strlen(message));

This is a pretty basic message. The subject is "Hi," the message is sent to "bob@uncle.com," and the message body is "Hi, Uncle Bob!"

You can add other fields, including carbon−copy (CC) and blind−carbon−copy (BCC) fields, and you can add attachments. For example, if you want
to also attach a file called "/boot/home/file.zip," you can do the following:

 mail−>AddEnclosure("/boot/home/file.zip");

Once your message has been constructed, you can send it by calling Send():

 mail−>Send();

That's the basic technique behind sending e−mail under the BeOS. The mail daemon also fetches incoming mail from a POP server, but you can't use
the BMailMessage class to read these messages; you use the BeOS BQuery and BNode classes to locate messages of interest and obtain information
about them. See "Querying Mail Messages" for more information.

 Constructor and Destructor

 BMailMessage()

BMailMessage(void)

Creates and returns a new BMailMessage object, which is empty. You need to call other functions defined by this class to fill out the message.

 ~BMailMessage()

~BMailMessage()

Destroys the BMailMessage, even if the object's fields are "dirty." For example, if you create a new BMailMessage object with the intention of sending
a message, fill out some or all of the fields, and then delete the object, the object is destroyed without being sent.

 Member Functions

 AddContent()

status_t AddContent(const char *text, int32 length,
 uint32 encoding = B_ISO1_CONVERSION, bool replace = false)

10

E-mail.h
MailMessage.summary.html
#BQuery
#BNode
#TempoChange(),SprayTempoChange()

status_t AddContent(const char *text, int32 length, const char *encoding, bool replace = false)

Adds the specified text (which contains length characters) to the BMailMessage object's content. The text's encoding is specified by the
encoding parameter, either directly or by pointer.

If replace is true, any existing text is deleted before the new content is added; otherwise, the specified text is appended to the end of the existing
message content.

RETURN CODES

• B_OK. The content was changed without error.

• B_ERROR. Unable to add the new content.

 AddEnclosure()

status_t AddEnclosure(entry_ref *enclosure_ref, bool replace = false)

status_t AddEnclosure(const char *path, bool replace = false)

status_t AddEnclosure(const char *mime_type, void *data, int32 length, bool replace = false)

Adds an attachment to the message. The first two forms of AddEnclosure() add a file to the message, given either an entry_ref pointer or a
pathname. The third form adds a block of memory (of the given length) to the message as an enclosure, with the specified MIME type.

If replace is true, any existing attachmentsincluding the body of the messageare removed before the new one is added; otherwise the new enclosure
is added, leaving previous attachments intact.

If you specify true for replace, not only will all existing enclosures be discarded, but so will the content of the message body itself.

RETURN CODES

• B_OK. The content was changed without error.

• B_ERROR. Unable to add the new enclosure.

 AddHeaderField()

status_t AddHeaderField(const char *field_name, const char *field_str, bool replace = false)

Adds a header field to the BMailMessage object. The value of the field whose name is specified by field_name is set to the string specified by
field_str.

If replace is true, all existing header fields of the specified name are deleted before adding the new header field; if replace is false, a new header
whose field is named field_name is added.

RETURN CODES

• B_OK. The content was changed without error.

• B_ERROR. Unable to add the new header field.

 Send()

status_t Send(bool send_now = false, bool remove_when_sent = false)

Queues the message for transmission. If send_now is true, the message is sent immediately; otherwise, it is placed in the queue to be sent the next
time check_for_mail() is called or the mail daemon performs an automatic mail check.

If the remove_when_sent argument is true, the message will be deleted from the user's disk drive after it has been sent; otherwise, it will be saved

 BMailMessage

11

#B_OK
#B_ERROR
#TempoChange(),SprayTempoChange()
#TempoChange(),SprayTempoChange()
#TempoChange(),SprayTempoChange()
#entry_ref
#B_OK
#B_ERROR
#TempoChange(),SprayTempoChange()
#B_OK
#B_ERROR
#TempoChange(),SprayTempoChange()

for posterity.

RETURN CODES

• B_OK. The content was changed without error.

• B_MAIL_NO_RECIPIENT. There needs to be either a "To" or "Bcc" field in the message.

• Errors from BMessage::SendMessage().

 BMailMessage

12

#B_OK
#B_MAIL_NO_RECIPIENT

The Mail Kit: Master Index

A

AddEnclosure() BMailMessage

AddHeaderField() BMailMessage

C

Constructing a Mail Message BMailMessage

Constructor and Destructor BMailMessage

count_pop_accounts() The Mail Daemon

D

E

encode_base64() The Mail Daemon

F

Function Summary BMailMessage

Functions The Mail Daemon

G

get_pop_account() The Mail Daemon

get_smtp_host() The Mail Daemon

M

The Mail Daemon The Mail Daemon

The Mail Daemon The Mail Daemon

The Mail Kit The Mail Kit

The Mail Kit The Mail Kit

BMailMessage BMailMessage

BMailMessage() BMailMessage

~BMailMessage() BMailMessage

Mail Message Files The Mail Kit

13

#Function%20Summary

Member Functions BMailMessage

O

Q

Querying Mail Messages The Mail Kit

S

send_queued_mail() The Mail Daemon

Sending and Retrieving Mail The Mail Daemon

set_mail_notification() The Mail Daemon

set_pop_account() The Mail Daemon

set_smtp_host() The Mail Daemon

The Mail Kit: Master Index

14

	The Device Kit - Table of Contents
	 The Mail Kit
	 The Mail Daemon
	 BMailMessage
	The Mail Kit: Master Index

