
 The Kernel Kit

The Device Kit − Table of Contents

 The Kernel Kit ...1

 Areas Concepts ..2

 Areas ...4

 Area Examples ...9

 Image Concepts ..13

 Images ...16

 Port Concepts ...19

 Ports ..21

 Semaphores ..26

 Semaphore Concepts ...31

 Semaphore Examples ..33

 System Information ...35

 System and Time Information ..40

 Thread and Team Concepts ...43

 Threads and Teams ...46

 Thread Priorities ...52

 Thread Priority Values ...53

 Time Information ..58

 Miscellaneous Functions and Constants ..59

The Kernel Kit: Master Index...61

i

 The Kernel Kit
The Kernel Kit is a collection of C functions that let you define and control the contexts in which your application operates. There are five main topics
in the Kit:

• "Threads and Teams". A thread is a synchronous computer process. By creating multiple threads, you can make your application perform
different tasks at (virtually) the same time. A team is the collection of threads that your application creates.

• "Ports". A port can be thought of as a mailbox for threads: A thread can write a message to a port, and some other thread (or, less usefully,
the same thread) can then retrieve the message.

• "Semaphores". A semaphore is a system−wide counting variable that can be used as a lock that protects a piece of code. Before a thread is
allowed to execute the code, it must acquire the semaphore that guards it. Semaphores can also be used to synchronize the execution of two
or more threads.

• "Areas". The area functions let you allocate large chunks of virtual memory. The two primary features of areas are: They can be locked into
the CPU's on−chip memory, and the data they hold can be shared between applications.

• "Images". An image is compiled code that can be dynamically linked into a running application. By loading and unloading images you can
make run−time decisions about the resources that your application has access to. Images are of particular interest to driver designers.

The rest of this chapter describes these topics in detail. The final three sections...

• "System Information",

• "Time Information",

• and "Miscellaneous Functions and Constants"

...fill in the gaps.

1

 Areas Concepts
An area is a chunk of virtual memory. As such, it has all the expected properties of virtual memory: It has a starting address, a size, the addresses it
comprises are contiguous, and it maps to (possibly non−contiguous) physical memory. The features that an area provides that you don't get with
"standard" memory are these:

• Areas can be shared. Different areas can refer to the same physical memory. Put another way, different virtual memory addresses can map
to the same physical locations. Furthermore, the different areas needn't belong to the same application. By creating and "cloning" areas,
applications can easily share the same data.

• Areas can be locked into RAM. You can specify that the area's physical memory be locked into RAM when it's created, locked on a
page−by−page basis as pages are swapped in, or that it be swapped in and out as needed.

• Areas can be read− and write−protected.

• Areas are page−aligned. Areas always start on a page boundary, and are allocated in integer multiples of the size of a page. (A page is
4096 bytes, as represented by the B_PAGE_SIZE constant.)

• You can specify the starting address of the area's virtual memory. The specification can require that the area start precisely at a certain
address, anywhere above a certain address, or anywhere at all.

Because areas are largeone page, minimumyou don't create them arbitrarily. The two most compelling reasons to create an area are the two first points
listed above: To share data among different applications, and to lock memory into RAM.

In all particulars (but one) you treat the memory that an area gives you exactly as you would treat any allocated memory: You can read and write it
through pointer manipulation, or through standard functions such as memcpy() and strcpy(). The one difference is between areas and malloc'd
memory is...

• You never free() the memory that an area allocates for you. If you want to get rid of an area, use the delete_area() function,
instead.

 Area IDs and Area Names

Each area that you create is tagged with an area_id number:

• An area_id number is a positive integer that's global and unique within the scope of the computer. They're not unique across the
network, nor are they persistent across boots.

• The area_id numbers are generated and assigned automatically by the create_area() and clone_area() functions. The other
area functions operate on these area_id numbers (they're required as arguments).

• Although they are global, area_id numbers have little meaning outside of the address space (application) in which they were created.

• Once assigned, the area_id number doesn't change; the number is invalidated when delete_area() is called or when the application
(team) that created it dies.

• Don't worry about recycled area_id numbers. When an area is deleted, it's area_id goes with it. (area_id values are recycled, but
the turnover is at 2^31.)

Areas can also be (loosely) identified by name:

• When you create an area (through create_area() or clone_area()), you get to name it.

• Area names are not uniqueany number of areas can be assigned the same name.

• To look up an area by name, use the FindArea() function.

 Sharing an Area Between Applications

For multiple applications to share a common area, one of the applications has to create the area, and the other applications clone the area. You clone an
area by calling clone_area(). The function takes, as its last argument, the area_id of the source area and returns a new (unique)
area_id number. All further references to the cloned area (in the cloning application) must be based on the area_id that's returned by
clone_area().

So how does a cloner find a source area_id in the first place?

• The source application can pass the "original" area_id number to the cloners.

• The cloners can find the area by name, by calling find_area().

Keep in mind that area names are not forced to be unique, so the find_area() method has some amount of uncertainty. But this can be minimized
through clever name creation.

 Cloned Memory

The physical memory that lies beneath an area is never implicitly copiedfor example, the area mechanism doesn't perform a "copy−on−write." If two
areas refer to the same memory because of cloning, a data modification that's affected through one area will be seen by the other area.

2

#free()

 Locking an Area

When you're working with moderately large amounts of data, it's often the case that you would prefer that the data remain in RAM, even if the rest of
your application needs to be swapped out. An argument to create_area() lets you declare, through the use of one of the following constants, the
locking scheme that you wish to apply to your area:

B_FULL_LOCK The area's memory is locked into RAM when the area is created, and won't be swapped out.

B_CONTIGUOUS Not only is the area's memory locked into RAM, it's also guaranteed to be contiguous. This is particularlyand perhaps
exclusivelyuseful to designers of certain types of device drivers.

B_LAZY_LOCK Allows individual pages of memory to be brought into RAM through the natural order of things and then locks them.

B_NO_LOCK Pages are never locked, they're swapped in and out as needed.

B_LOMEM This is a special constant that's used for for areas that need to be locked, contiguous, and that fit within the first 16MB of
physical memory. The folks that need this constant know who they are.

Keep in mind that locking an area essentially reduces the amount of RAM that can be used by other applications, and so increases the likelihood of
swapping. So you shouldn't lock simply because you're greedy. But if the area that you're locking is going to be shared among some number of other
applications, or if you're writing a real−time application that processes large chunks of data, then locking can be a justifiable excess.

The locking scheme is set by the create_area() function and is thereafter immutable. You can't re−declare the lock when you clone an area.

 Area Info

Ultimately, you use an area for the virtual memory that it represents: You create an area because you want some memory to which you can write and
from which you can read data. These acts are performed in the usual manner, through references to specific addresses. Setting a pointer to a location
within the area, and checking that you haven't exceeded the area's memory bounds as you increment the pointer (while reading or writing) are your
own responsibility. To do this properly, you need to know the area's starting address and its extent:

• An area's starting address is maintained as the address field in its area_info structure; you retrieve the area_info for a particular
area through the get_area_info() function.

• The size of the area (in bytes) is given as the size field of its area_info structure.

An important point, with regard to area_info, is that the address field is only valid for the application that created or cloned the area (in other
words, the application that created the area_id that was passed to get_area_info()). Although the memory that underlies an area is global, the
address that you get from an area_info structure refers to a specific address space.

If there's any question about whether a particular area_id is "local" or "foreign," you can compare the area_info.team field to your thread's
team.

 Deleting an Area

When your application quits, the areas (the area_id numbers) that it created through create_area() or clone_area() are automatically
rendered invalid. The memory underlying these areas, however, isn't necessarily freed. An area's memory is freed only when (and as soon as) there are
no more areas that refer to it.

You can force the invalidation of an area_id by passing it to the delete_area() function. Again, the underlying memory is only freed if yours
is the last area to refer to the memory.

Deleting an area, whether explicitly through delete_area(), or because your application quit, never affects the status of other areas that were
cloned from it.

 Areas Concepts

3

 Areas
Declared in: be/kernel/OS.h

Library: libroot.so

An area is a chunk of virtual memory that can be shared between threads (possibly in different teams). If your application needs to allocate large
chunks of memory, or wants to share lots of data with another application, you should consider using an area.

For more on area concepts, see "Areas Concepts".

For examples of creating and sharing areas, see "Area Examples".

 Area Functions

 area_for()

area_id area_for(void *addr)

Returns the area that contains the given address (within your own team's address space). The argument needn't be the starting address of an area, nor
must it start on a page boundary: If the address lies anywhere within one of your application's areas, the ID of that area is returned.

Since the address is taken to be in the local address space, the area that's returned will also be localit will have been created or cloned by your
application.

RETURN CODES

• B_ERROR. The address doesn't lie within an area.

See also: find_area()

 clone_area()

area_id clone_area(const char *clone_name,
 void **clone_addr,
 uint32 clone_addr_spec,
 uint32 clone_protection,
 area_id source_area)

Creates a new area (the clone area) that maps to the same physical memory as an existing area (the source area).

• clone_name is the name that you wish to assign to the clone area. Area names are, at most, B_OS_NAME_LENGTH characters long.

• clone_addr points to a value that gives the address at which you want the clone area to start; the pointed−to value must be a multiple of
B_PAGE_SIZE (4096). The function sets the value pointed to by clone_addr to the area's actual starting addressit may be different from
the one you requested. The constancy of *clone_addr depends on the value of clone_addr_spec, as explained next.

• clone_addr_spec is one of four constants that describes how clone_addr is to be interpreted. The first three
constants, B_EXACT_ADDRESS, B_BASE_ADDRESS, and B_ANY_ADDRESS, have meanings as explained under create_area().

The fourth constant, B_CLONE_ADDRESS, specifies that the address of the cloned area should be the same as the address of the source
area. Cloning the address is convenient if you have two (or more) applications that want to pass pointers to each otherby using cloned
addresses, the applications won't have to offset the pointers that they receive. For both the B_ANY_ADDRESS and
B_CLONE_ADDRESS specifications, the value that's pointed to by the clone_addr argument is ignored.

• clone_protection is one or both of B_READ_AREA and B_WRITE_AREA. These have the same meaning as in create_area(); keep
in mind, as described there, that a cloned area can have a protection that's different from that of its source.

• source_area is the area_id of the area that you wish to clone. You usually supply this value by passing an area name to the
find_area() function.

The cloned area inherits the source area's locking scheme.

Usually, the source area and clone area are in two different applications. It's possible to clone an area from a source that's in the same application, but
there's not much reason to do so unless you want the areas to have different protections.

If clone_area() clone is successful, the clone's area_id is returned. Otherwise, it returns a descriptive error code, listed below.

RETURN CODES

• B_BAD_VALUE. Bad argument value; you passed an unrecognized constant for addr_spec or lock, the addr value isn't a multiple of
B_PAGE_SIZE, you set addr_spec to B_EXACT_ADDRESS or B_CLONE_ADDRESS but the address request couldn't be fulfilled,

4

OS.h
#B_ERROR
#B_BAD_VALUE

or source_area doesn't identify an existing area.

• B_NO_MEMORY. Not enough memory to allocate the system structures that support this area (unlikely).

• B_ERROR. Some other system error prevented the area from being created.

See also: create_area()

 create_area()

area_id create_area(const char *name,
 void **addr,
 uint32 addr_spec,
 uint32 size,
 uint32 lock,
 uint32 protection)

Creates a new area and returns its area_id.

• name is the name that you wish to assign to the area. It needn't be unique. Area names are, at most, B_OS_NAME_LENGTH (32) characters
long.

• addr points to the address at which you want the area to start. The value of *addr must signify a page boundary; in other words, it must be
an integer multiple of B_PAGE_SIZE (4096). Note that this is a pointer to a pointer: *addrnot addrshould be set to the desired address;
you then pass the address of addr as the argument, as shown below:

 /* Set the address to a page boundary. */
 char *addr = (char *)(B_PAGE_SIZE * 100);

 /* Pass the address of addr as the second argument. */
 create_area("my area", &addr, ...);

The function sets the value of *addr to the area's actual starting addressit may be different from the one you requested. The constancy of
*addr depends on the value of addr_spec, as explained next.

• addr_spec is a constant that tells the function how the *addr value should be applied. There are three useful address specification
constants, and one that doesn't apply here:

B_EXACT_ADDRESS You want the value of *addr to be taken literally and strictly. If the area can't be allocated at that location, the
function fails.

B_BASE_ADDRESS The area can start at a location equal to or greater than *addr.

B_ANY_ADDRESS The starting address is determined by the system. In this case, the value that's pointed to by addr is ignored (going
into the function).

B_ANY_KERNEL_ADDRESS
The starting address is determined by the system, and the new area will belong to the kernel's team; it won't be
deleted when the application quits. In this case, the value that's pointed to by addr is ignored (going into the
function).

B_CLONE_ADDRESS This is only meaningful to the clone_area() function.

• size is the size, in bytes, of the area. The size must be an integer multiple of B_PAGE_SIZE (4096). The upper limit of size depends on
the available swap space (or RAM, if the area is to be locked).

• lock describes how the physical memory should be treated with regard to swapping. There are four locking constants:

B_FULL_LOCK The area's memory is locked into RAM when the area is created, and won't be swapped out.

B_CONTIGUOUS Not only is the area's memory locked into RAM, it's also guaranteed to be contiguous. This is particularlyand perhaps
exclusivelyuseful to designers of certain types of device drivers.

B_LAZY_LOCK Allows individual pages of memory to be brought into RAM through the natural order of things and then locks them.

B_NO_LOCK Pages are never locked, they're swapped in and out as needed.

B_LOMEM This is a special constant that's used for for areas that need to be locked, contiguous, and that fit within the first 16MB of
physical memory. The folks that need this constant know who they are.

• protection is a mask that describes whether the memory can be written and read. You form the mask by adding the constants

 Areas

5

#B_NO_MEMORY
#B_ERROR

B_READ_AREA (the area can be read) and B_WRITE_AREA (it can be written). The protection you describe applies only to this area. If
your area is cloned, the clone can specify a different protection.

If create_area() is successful, the new area_id number is returned. If it's unsuccessful, one of the following error constants is returned.

RETURN CODES

• B_BAD_VALUE. Bad argument value. You passed an unrecognized constant for addr_spec or lock, the addr or size value isn't a multiple
of B_PAGE_SIZE, or you set addr_spec to B_EXACT_ADDRESS but the address request couldn't be fulfilled.

• B_NO_MEMORY. Not enough memory to allocate the system structures that support this area (unlikely), not enough physical memory to
support a locked area, or not enough swap space to allocate virtual memory (in other words, size is too big.)

• B_ERROR. Some other system error prevented the area from being created.

See also: clone_area()

 delete_area()

status_t delete_area(area_id area)

Deletes the designated area. If no one other area maps to the physical memory that this area represents, the memory is freed. After being deleted, the
area value is invalid as an area identifier.

Currently, anybody can delete any areathe act isn't denied if, for example, the area_id argument was created by another
application. This freedom will be rescinded in a later release. Until then, try to avoid deleting other application's areas.

RETURN CODES

• B_OK. The area was deleted; area is now invalid.

• B_ERROR. area doesn't designate an actual area.

 find_area()

area_id find_area(const char *name)

Returns an area that has a name that matches the argument. Area names needn't be uniquesuccessive calls to this function with the same argument
value may not return the same area_id.

What you do with the area you've found depends on where it came from:

• If you're finding an area that your own application created or cloned, you can use the returned ID directly.

• If the area was created or cloned by some other application, you should immediately clone the area (unless you're doing something truly
innocuous, such as simply examining the area's info structure).

RETURN CODES

• B_NAME_NOT_FOUND. The argument doesn't identify an existing area.

See also: area_for()

 get_area_info() , get_next_area_info() , area_info

status_t get_area_info(area_id area, area_info *info)

status_t get_next_area_info(team_id team, int32 *cookie, area_info *info)

struct {} area_info

Copies information about a particular area into the area_info structure designated by info. The first version of the function designates the area
directly, by area_id.

 Areas

6

#B_BAD_VALUE
#B_NO_MEMORY
#B_ERROR
#B_OK
#B_ERROR
#B_NAME_NOT_FOUND

The get_next_area_info() version lets you step through the list of a team's areas through iterated calls on the function. The team argument
identifies the team you want to look at; a team value of 0 means the team of the calling thread. The cookie argument is a placemark; you set it to 0 on
your first call, and let the function do the rest. The function returns B_BAD_VALUE when there are no more areas to visit:

 /* Get the area_info for every area in this team. */
 area_info info;
 int32 cookie = 0;

 while (get_next_area_info(0, &cookie, &info) == B_OK)
 ...

The area_info structure is:

typedef struct area_info {
 area_id area;
 char name[B_OS_NAME_LENGTH];
 size_t size;
 uint32 lock;
 uint32 protection;
 team_id team;
 size_t ram_size;
 uint32 copy_count;
 uint32 in_count;
 uint32 out_count;
 void *address;
 } area_info;

The fields are:

• area is the area_id that identifies the area.

• name is the name that was assigned to the area when it was created or cloned.

• size is the (virtual) size of the area, in bytes.

• lock is a constant that represents the area's locking scheme. This will be one of B_FULL_LOCK, B_CONTIGUOUS, B_LAZY_LOCK,
B_NO_LOCK, or B_LOMEM.

• protection specifies whether the area's memory can be read or written. It's a combination of B_READ_AREA and B_WRITE_AREA.

• team is the team_id of the team that created or cloned this area.

• address is a pointer to the area's starting address. Keep in mind that this address is only meaningful to the team that created (or cloned)
the area.

The final four fields give information about the area that's useful in diagnosing system use. The fields are particularly valuable if you're hunting for
memory leaks:

• ram_size gives the amount of the area, in bytes, that's currently swapped in.

• copy_count is a "copy−on−write" count that can be ignoredit doesn't apply to the areas that you create. The system can create
copy−on−write areas (it does so when it loads the data section of an executable, for example), but you can't.

• in_count is a count of the total number of times any of the pages in the area have been swapped in.

• out_count is a count of the total number of times any of the pages in the area have been swapped out.

RETURN CODES

• B_OK. The area was found; info contains valid information.

• B_BAD_VALUE. area doesn't identify an existing area, team doesn't identify an existing team, or there are no more areas to visit.

 resize_area()

status_t resize_area(area_id area, size_t new_size)

Sets the size of the designated area to new_size, measured in bytes. The new_size argument must be a multiple of B_PAGE_SIZE (4096).

Size modifications affect the end of the area's existing memory allocation: If you're increasing the size of the area, the new memory is added to the end
of area; if you're shrinking the area, end pages are released and freed. In neither case does the area's starting address change, nor is existing data
modified (except, of course, for data that's lost due to shrinkage).

Resizing affects all areas that refer to this areas physical memory. For example, if B is a clone of A, and you resize A, B will be automatically resized
(if possible).

RETURN CODES

 Areas

7

#B_BAD_VALUE
#B_OK
#B_BAD_VALUE

• B_OK. The area was successfully resized.

• B_BAD_VALUE. area doesn't signify a valid area, or new_size isn't a multiple of B_PAGE_SIZE.

• B_NO_MEMORY. Not enough memory to support the new portion of the area. This should only happen if you're increasing the size of the
area.

• B_ERROR. Some other system error prevented the area from being created.

 set_area_protection()

status_t set_area_protection(area_id area, uint32 new_protection)

Sets the given area's read and write protection. The new_protection argument is a mask that specifies one or both of the values B_READ_AREA and
B_WRITE_AREA. The former means that the area can be read; the latter, that it can be written to. An area's protection only applies to access to the
underlying memory through that specific area. Different area clones that refer to the same memory may have different protections.

RETURN CODES

• B_OK. The protection was changed.

• B_BAD_VALUE. area doesn't identify a valid area.

 Areas

8

#B_OK
#B_BAD_VALUE
#B_NO_MEMORY
#B_ERROR
#B_OK
#B_BAD_VALUE

 Area Examples
Example 1: Creating and Writing into an Area

Example 2: Reading a File into an Area

Example 3: Accessing a Designated Area

Example 4: Cloning and Sharing an Area

Example 5: Cloning Addresses

 Example 1: Creating and Writing into an Area
As a simple example of area creation and usage, here we create a ten page area and fill half of it (with nonsense) by bumping a pointer:

 area_id my_area;
 char *area_addr, *ptr;

 /* Create an area. */
 my_area = create_area("my area", /* name you give to the area */
 (void *)&area_addr, /* returns the starting addr */
 B_ANY_ADDRESS, /* area can start anywhere */
 B_PAGE_SIZE*10, /* size in bytes */
 B_NO_LOCK, /* Lock in RAM? No. */
 B_READ_AREA | B_WRITE_AREA); /* permissions */

 /* check for errors */
 if (my_area < 0) {
 printf("Something bad happenedn");
 return;
 }

 /* Set ptr to the beginning of the area. */
 ptr = area_addr;

 /* Fill half the area (with random−ish data). */
 for (int i; i < B_PAGE_SIZE*5; i++)
 *ptr++ = system_time()%256;

You can also memcpy() and strcpy() into the area:

 /* Copy the first half of the area into the second half. */
 memcpy(ptr, area_addr, B_PAGE_SIZE*5);

 /* Overwrite the beginning of the area. */
 strcpy(area_addr, "Hey, look where I am.");

When we're all done, we delete the area:

 delete_area(my_area);

 Example 2: Reading a File into an Area
Here's a function that finds a file, opens it (implicit in the BFile constructor), and copies its contents into RAM:

 #include <File.h>

 area_id file_area;

 status_t file_reader(const char *pathname)
 {
 status_t err;
 char *area_addr;

 BFile file(pathname, B_READ_ONLY);
 if ((err=file.InitCheck()) != B_OK) {
 printf("%s: Can>t find or open.n", pathname);
 return err;
 }

 err = file.GetSize(&file_size);
 if (err != B_OK || file_size == 0) {
 printf("%s: Disappeared? Empty?n", pathname);
 return err;
 }

 /* Round the size up to the nearest page. */
 file_size = (((file_size−1)%B_PAGE_SIZE)+1)*B_PAGE_SIZE;

 /* Make sure the size won>t overflow a size_t spec. */
 if (file_size >= ((1<<32)−1)) {
 printf("%s: What'd you do? Read Montana?n");
 return B_NO_MEMORY;
 }
 file_area = create_area("File area", (void *)&area_addr,
 B_ANY_ADDRESS, file_size, B_FULL_LOCK,
 B_READ_AREA | B_WRITE_AREA);

 /* Check create_area() errors, as in the last example. */

9

#Example%201:%20Creating%20and%20Writing%20into%20an%20Area
#Example%201:%20Creating%20and%20Writing%20into%20an%20Area
#Example%202:%20Reading%20a%20File%20into%20an%20Area
#Example%202:%20Reading%20a%20File%20into%20an%20Area
#Example%203:%20Accessing%20a%20Designated%20Area
#Example%203:%20Accessing%20a%20Designated%20Area
#Example%204:%20Cloning%20and%20Sharing%20an%20Area
#Example%204:%20Cloning%20and%20Sharing%20an%20Area
#Example%205:%20Cloning%20Addresses
#Example%205:%20Cloning%20Addresses
#BFile

 ...

 /* Read the file; delete the area if there>s an error. */
 if ((err=file.Read(area_addr, file_size)) < B_OK) {
 printf("%s: File read error.n");
 delete_area(file_area);
 return err;
 }

 /* The file is automatically closed when the stack−based
 * BFile is destroyed.
 */
 return B_OK;
 }

 Example 3: Accessing a Designated Area
In the previous example, a local variable (area_addr) was used to capture the starting address of the newly−created area. If some other function
wants to access the area, it must "re−find" the starting address (and the length of the area, for boundary checking). To do this, you call
get_area_info().

In the following example, an area is passed in by name; the function, which will write its argument buffer to the area, calls get_area_info() to
determine the start and extent of the area, and also to make sure that the area is part of this team. If the area was created by some other team, the
function could still write to it, but it would have to clone the area first (cloning is demonstrated in the next example).

 status_t write_to_area(const char *area_name,
 const void *buf,
 size_t len)
 {
 area_id area;
 area_info ai;
 thread_id thread;
 thread_info ti;
 status_t err;

 if (!area_name)
 return B_BAD_VALUE;

 area = find_area(area_name);

 /* Did we find it? */
 if (area < B_OK) {
 printf("Couldn>t find area %s.n", area_name);
 return err;
 }

 /* Get the info. */
 err = get_area_info(area, &ai);

 if (err < B_OK) {
 printf("Couldn>t get area info.n");
 return err;
 }

 /* Get the team of the calling thread; to do this, we have
 * to look in the thread_info structure.
 */
 err = get_thread_info(find_thread(NULL), &ti);

 if (err < B_OK) {
 printf("Couldn>t get thread info.n");
 return err;
 }

 /* Compare this team to the area>s team. */
 if (ai.team != ti.team)
 printf("Foreign area.n");
 return B_NOT_ALLOWED;
 }
 /* Make sure we>re not going to overflow the area,
 * and make sure this area can be written to.
 */
 if (len > ai.size) {
 printf("Buffer bigger than area.n");
 return B_BAD_VALUE;
 }
 if (!(ai.protection & B_WRITE_AREA)) {
 printf("Can>t write to this area.n");
 return B_NOT_ALLOWED;
 }

 /* Now we can write. */
 memcpy(ai.address, buf, len);
 return B_OK;
 }

It's important that you only write to areas that were created or cloned within the calling team. The starting address of a "foreign" area is usually
meaningless within your own address space.

You don't have to check the area's protectection before writing to it (or reading from it). The memory−accessing fucntions (memcpy(), in this
example) will segfault if an invalid read or write is requested.

 Area Examples

10

 Example 4: Cloning and Sharing an Area
In the following example, a server and a client are set up to share a common area. Here's the server:

 /* Server side */
 class AServer
 {
 status_t make_shared_area(size_t size);
 area_id the_area;
 char *area_addr;
 };

 status_t AServer::make_shared_area(size_t size)
 {
 /* The size must be rounded to a page. */
 size = ((size % B_PAGE_SIZE)+1) * B_PAGE_SIZE;
 the_area = create_area("server area", (void *)&area_addr
 B_ANY_ADDRESS, size, B_NO_LOCK,
 B_READ_AREA|B_WRITE_AREA);

 if (the_area < B_OK) {
 printf("Couldn>t create server arean");
 return the_area;

 return B_OK;
 }

And here's the client:

 /* Client side */
 class AClient
 {
 status_t make_shared_clone();
 area_id the_area;
 char *area_addr;
 };

 status_t AClient::make_shared_clone()
 {
 area_id src_area;

 src_area = find_area("server area");
 if (src_area < B_ERROR) {
 printf("Couldn>t find server area.n");
 return src_area;
 }
 the_area = clone_area("client area",
 (void *)&area_addr,
 B_ANY_ADDRESS,
 B_READ_AREA | B_WRITE_AREA,
 src_area);

 if (the_area < B_OK)
 printf("Couldn>t create clone arean");
 return the_area;
 }
 return B_OK;
 }

Notice that the area creator (the server in the example) doesn't have to designate the created area as sharable. All areas are candidates for cloning.

After it creates the cloned area, the client's area_id value (AClient::the_area) will be different from the server's (AServer::the_area).
Even though area_id numbers are global, the client should only refer to the server's area_id number in order to clone it. After the clone, the client
talks to the area through its own area_id (the value passed backed by clone_area()).

 Example 5: Cloning Addresses
It's sometimes useful for shared areas (in other words, a "source" and a clone) to begin at the same starting address. For example, if a client's clone area
starts at the same address as the server's original area, then the client and server can pass area−accessing pointers back and forth without having to
translate the addresses. Here we modify the previous example to do this:

 status_t AClient::make_shared_clone()
 {
 area_id src_area;

 src_area = find_area("server area");

 if (src_area < B_ERROR) {
 printf("Couldn>t find server area.n");
 return B_BAD_VALUE;
 }

 /* This time, we specify the address that we want the
 * clone to start at. The B_CLONE_ADDRESS constant
 * does this for us.
 */
 area_addr = src_info.address;
 the_area = clone_area("client area",
 (void *)&area_addr,
 B_CLONE_ADDRESS,
 B_READ_AREA | B_WRITE_AREA,
 src_area);

 if (the_area < B_OK)
 printf("Couldn>t create clone arean");

 Area Examples

11

 return the_area;
 }
 return B_OK;
 }

Of course, demanding that an area begin at a specific address can be too restrictive; if any of the memory within [area_addr, area_addr + src_info.size]
is already allocated, the clone will fail.

 Area Examples

12

 Image Concepts
An image is compiled code. There are three types of image:

• An app image is an application. Every application has a single app image.

• A library image is a dynamically linked library (a "shared library"). Most applications link against the system libraries (libroot.so, libbe.so,
and so on) that Be provides.

• An add−on image is an image that you load into your application as it's running. Symbols from the add−on image are linked and references
are resolved when the image is loaded. An add−on image provides a sort of "heightened dynamic linking" beyond that of a DLL.

The following sections explain how to load and run an app image, how to create a shared library, and how to create and load an add−on image.

 Loading an App Image

Loading an app image is like running a "sub−program." The image that you load is launched in much the same way as had you double−clicked it in the
Tracker, or launched it from the command line. It runs in its own teamit doesn't share the address space of the application from which it was
launchedand, generally, leads its own life.

Any application can be loaded as an app image; you don't need to issue special compile instructions or otherwise manipulate the binary. The one
requirement of an app image is that it must have a main() function.

To load an app image, you call the load_image() function:

 thread_id load_image(int32 argc,
 const char **argv,
 const char **env)

The function's first two arguments identify the app image (file) that you want to launchwe'll return to this in a moment. Having located the file, the
function creates a new team, spawns a main thread in that team, and returns the thread_id of the thread to you. The thread isn't running: To make it
run you pass the thread_id to resume_thread() or wait_for_thread() (as explained in "Threads and Teams").

The argc/argv argument pair is copied and forwarded to the new thread's main() function:

• The first string in the argv array must be the name of the image file that you want to launch; load_image() uses this string to find the
file. You then install any other arguments you want in the array, and terminate the array with a NULL entry. argc is set to the number of
entries in the argv array (not counting the terminating NULL). It's the caller's responsibility to free the argv array after
load_image() returns (rememberthe array is copied before it's passed to the new thread).

• envp is an array of environment variables that are also passed to main(). Typically, you use the global environ pointer (which you
must declare as an externsee the example, below). You can, of course, create your own environment variable array: As with the
argv array, the envp array should be terminated with a NULL entry, and you must free the array when load_image() returns (that is, if
you allocated it yourselfdon't try to free environ).

The following example demonstrates a typical use of load_image(). First, we include the appropriate files and declare the necessary variables:

 #include <image.h> /* load_executable() */
 #include <OS.h> /* wait_for_thread() */
 #include <stdlib.h> /* malloc() */

 char **arg_v; /* choose a name that doesn>t collide with argv */
 int32 arg_c; /* same here vis a vis argc */
 thread_id exec_thread;
 int32 return_value;

Install, in the arg_v array, the "command line" arguments. Let's pretend we're launching a program found in /boot/home/apps/adder that takes two
integers, adds them together, and returns the result as main()'s exit code. Thus, there are three arguments: The name of the program, and the values
of the two addends converted to strings. Since there are three arguments, we allocate arg_v to hold four pointers (to accommodate the final NULL).
Then we allocate and copy the arguments.

 arg_c = 3;
 arg_v = (char **)malloc(sizeof(char *) * (arg_c + 1));

 arg_v[0] = strdup("/boot/home/apps/adder");
 arg_v[1] = strdup("5");
 arg_v[2] = strdup("3");
 arg_v[3] = NULL;

Now that everything is properly set up, we call load_image(). After the function returns, it's safe to free the allocated arg_v array:

 exec_thread = load_image(arg_c, arg_v, environ);

 while (−−arg_c >= 0)
 free(arg_v[arg_c]);

 free(arg_v);

At this point, exec_thread is suspended (the natural state of a newly−spawned thread). In order to retrieve its return value, we
use wait_for_thread() to tell the thread to run:

 wait_for_thread(exec_thread, &return_value);

After wait_for_thread() returns, the value of return_value should be 8 (i.e. 5 + 3).

13

 Creating a Shared Library

The primary documentation for creating a shared library is provided by MetroWerks in their CodeWarrior manual. Beyond the information that you
find there, you should be aware of the following amendments and caveats:

• You mustn't export your library's symbols through the −export all linker flag. Instead, use the __declspec() directive to export
each symbol. The macro is described below. If you're compiling for the PPC, you must also export #pragma symbols; to do this from the
BeIDE, go to the Linker/PEF portion of the Settings window and set "Export Symbols" to "Use #pragma".

• The loader looks for libraries by following the LIBRARY_PATH environment variable. The default library path looks like this:

 $ echo $LIBRARY_PATH
 %A/lib:/boot/home/config/lib:/boot/beos/system/lib

where "%A" means the directory that contains the app that the user is lauching.

 Exporting and Importing Symbols

If you're developing a shared library you should explicitly export every global symbol in your library by using the __declspec() macro. To export
a symbol, you declare it thus...

 __declspec(dllexport) type name

...where "_declspec(dllexport)" is literal, and type and name declare the symbol. Some examples:

 __declspec(dllexport) char *some_name;
 __declspec(dllexport) void some_func() {...}
 class __declspec(dllexport) MyView {...}

To import these symbols, an app that wants to use your library must "reverse" the declaration by replacing dllexport with dllimport:

 __declspec(dllimport) char *some_name;
 __declspec(dllimport) void some_func();
 class __declspec(dllimport) MyView;

The trouble with this system is that it implies two sets of headers, one for exporting (for building your library) and another for importing (that the
library client would use). The Be libraries use macros, defined in be/BeBuild.h, that throw the import/export switch so the header files can be unified.
For example, here's the macro for libbe:

 #if _BUILDING_be
 #define _IMPEXP_BE __declspec(dllexport)
 #else
 #define _IMPEXP_BE __declspec(dllimport)
 #endif

When libbe is being built, a private compiler directive defines _BUILDING_be to be non−zero, and _IMPEXP_BE exports symbols. When a
developer includes BeBuild.h, the _BUILDING_be variable is set to zero, so _IMPEXP_BE is set to import symbols.

You may want to emulate this system by defining macros for your own libraries. This implies that you have to define a compiler switch (analogous to
_BUILDING_be) yourself. Set the switch to non−zero when you're building your library, and then set it to zero when you publish your headers for
use by library clients.

 Creating and Using an Add−on Image

An add−on image is indistinguishable from a shared library image. Creating an add−on is exactly like creating a shared library, a topic that we breezed
through above, but with a couple of minor tweaks:

• The loader looks for add−ons by following the paths in the ADDON_PATH environment variable. The default ADDON_PATH looks like this:

 $ echo $ADDON_PATH
 %A/add−ons:/boot/home/config/add−ons:/boot/beos/system/add−ons

• You have to export your add−on symbols, and you also must extern "C" them. This ensures that the symbol names won't be mangled by
the compiler.

 Exporting Add−on Symbols

To export your add−on's symbols, declare them thus:

 extern "C" __declspec(dllexport) void some_func();
 extern "C" __declspec(dllexport) int32 some_global_data;

To extern a C++ class takes more work. You can't extern the class directly; typically what you do is create (and extern) a C function that covers the
class constructor:

 extern "C" __declspec(dllexport) MyClass *instantiate_my_class();

instantiate_my_class() is implemented to call the MyClass constructor:

 MyClass *instantiate_my_class()
 {
 return new MyClass();
 }

 Image Concepts

14

 Loading an Add−on Image

To load an add−on into your application, you call the load_add_on() function. The function takes a pathname (absolute or relative to the current
working directory) to the add−on file, and returns an image_id number that uniquely identifies the image across the entire system.

For example, let's say you've created an add−on image that's stored in the file /boot/home/add−ons/adder. The code that loads the add−on would look
like this:

 /* For brevity, we won>t check errors. */
 image_id addon_image;

 /* Load the add−on. */
 addon_image = load_add_on("/boot/home/add−ons/adder");

Unlike loading an executable, loading an add−on doesn't create a separate team, nor does it spawn another thread. The whole point of loading an
add−on is to bring the image into your application's address space so you can call the functions and fiddle with the variables that the add−on defines.

 Symbols

After you've loaded an add−on into your application, you'll want to examine the symbols (variables and functions) that it has brought with it. To get
information about a symbol, you call the get_image_symbol() function:

 status_t get_image_symbol(image_id image,
 char *symbol_name,
 int32 symbol_type,
 void **location)

The function's first three arguments identify the symbol that you want to get:

• The first argument is the image_id of the add−on that owns the symbol.

• The second argument is the symbol's name. This assumes, of course, that you know the name, and that the add−on has declared the name as
extern. In general, using an add−on implies just this sort of cooperation.

• The third argument is a constant that gives the symbol's symbol type. There are three types, as given below. If the executable format doesn't
distinguish between text and data symbols, then you can use any of these three typesthey'll all be the same. If the format does distinguish
between text and data, then you can either ask for the specific type, or you can ask for B_SYMBOL_TYPE_ANY.

B_SYMBOL_TYPE_DATA Global data (variables)

B_SYMBOL_TYPE_TEXT Functions

B_SYMBOL_TYPE_ANY The symbol lives anywhere

The function returns, by reference in its final argument, a pointer to the symbol's address. For example, let's say the adder add−on code looks like
this:

 extern "C" int32 a1 = 0;
 extern "C" int32 a2 = 0;
 extern "C" int32 adder(void);

 int32 adder(void)
 {
 return (a1 + a2);
 }

To examine the variables (a1 and a2), you would call get_image_symbol() thus:

 int32 *var_a1, *var_a2;

 get_image_symbol(addon_image, "a1", B_SYMBOL_TYPE_DATA, &var_a1);
 get_image_symbol(addon_image, "a2", B_SYMBOL_TYPE_DATA, &var_a2);

Here we get the symbol for the adder() function:

 int32 (*func_add)();
 get_image_symbol(addon_image, "adder", B_SYMBOL_TYPE_TEXT, &func_add);

Now that we've retrieved all the symbols, we can set the values of the two addends and call the function:

 *var_a1 = 5;
 *var_a2 = 3;
 int32 return_value = (*func_add)();

 Image Concepts

15

 Images
Declared in: be/kernel/image.h

Library: libroot.so

This isn't about graphics. An image is compiled code, of which there are three types: app images, library images, and add−on images. An app image is
executable code that can be launched. A library image is a collection of shared code that you link against when you're compiling your application. An
add−on image is code that an app can load and run while the app itself is running. Note that an add−on can also be an app; in other words, you can
create an image that can be launched by itself, or that can be loaded into another application.

For more information on creating and using images, see "Image Concepts".

 Image Functions

 get_image_info() , get_next_image_info() , image_info

status_t get_image_info(image_id image, image_info *info)

status_t get_next_image_info(team_id team,
 int32 *cookie,
 image_info *info)

struct {} image_info

These functions copy, into the info argument, the image_info structure for a particular image. The get_image_info() function gets the
information for the image identified by image.

The get_next_image_info() function lets you step through the list of a team's images through iterated calls. The team argument identifies the
team you want to look at; a team value of 0 means the team of the calling thread. The cookie argument is a placemark; you set it to 0 on your first
call, and let the function do the rest. The function returns B_BAD_VALUE when there are no more images to visit:

 /* Get the image_info for every image in this team. */
 image_info info;
 int32 cookie = 0;

 while (get_next_image_info(0, &cookie, &info) == B_OK)
 ...

The image_info structure is:

typedef struct {
 image_id id;
 image_type type;
 int32 sequence;
 int32 init_order;
 B_PFV init_routine;
 B_PFV term_routine;
 dev_t device;
 ino_t node;
 char name[MAXPATHLEN];
 void *text;
 void *data;
 int32 text_size;
 int32 data_size;
 } image_info

The fields are:

• id. The image's image_id number.

• type. A constant (listed below) that tells whether this is an app, library, or add−on image.

• sequence and init_order. These are zero−based ordinal numbers that give the order in which the image was loaded and initialized,
compared to all the other images in this team.

• init_routine and term_routine. These are pointers to the functions that are used to intialize and terminate the image (more
specifically, the image's main thread). The B_PFV type is a cover for a pointer to a (void*) function.

• device. The device that the image file lives on.

• node. The node number of the image file.

• name. The full pathname of the file whence sprang the image.

16

image.h
#B_BAD_VALUE
#Function%20Pointers

• text and text_size. The address and the size (in bytes) of the image's text segment.

• data and data_size. The address and size of the image's data segment.

The self−explanatory image_type constants are:

 B_APP_IMAGE

 B_LIBRARY_IMAGE

 B_ADD_ON_IMAGE

RETURN CODES

B_OK. The image was found; info contains valid information.

• B_BAD_VALUE. image doesn>t identify an existing image, team doesn>t identify an existing team, or there are no more images to visit.

 get_image_symbol() , get_nth_image_symbol()

status_t get_image_symbol(image_id image,
 char *symbol_name,
 int32 symbol_type,
 void **location)

status_t get_nth_image_symbol(image_id image,
 int32 n,
 char *name,

int32 *name_length,
 int32 *symbol_type,
 void **location)

get_image_symbol() returns, in location, a pointer to the address of the symbol that's identified by the image, symbol_name, and
symbol_type arguments. An example demonstrating the use of this function is given in "Symbols."

get_nth_image_symbol() returns information about the n'th symbol in the given image. The information is returned in the arguments:

• name is the name of the symbol. You have to allocate the name buffer before you pass it inthe function copies the name into the buffer.

• You point name_length to an integer that gives the length of the name buffer that you're passing in. The function uses this value to
truncate the string that it copies into name. The function then resets name_length to the full (untruncated) length of the symbol's name
(plus one byte to accommodate a terminating NULL). To ensure that you've gotten the symbol's full name, you should compare the in−going
value of name_length with the value that the function sets it to. If the in−going value is less than the full length, you can then re−invoke
get_nth_image_symbol() with an adequately lengthened name buffer, and an increased name_length value.

Keep in mind that name_length is reset each time you call get_nth_image_symbol(). If you're calling the function iteratively (to
retrieve all the symbols in an image), you need to reset the name_length value between calls.

• The function sets symbol_type to B_SYMBOL_TYPE_DATA if the symbol is a variable, B_SYMBOL_TYPE_TEXT if the symbol is a
function, or B_SYMBOL_TYPE_ANY if the executable format doesn't distinguish between the two. The argument's value going into the
function is of no consequence.

• The function sets location to point to the symbol's address.

To retrieve image_id numbers on which these functions can act, use the get_next_image_info() function. Such numbers are also returned
directly when you load an add−on image through the load_add_on() function.

RETURN CODES

B_OK. The symbol was found.

• B_BAD_IMAGE_ID. image doesn>t identify an existing image.

• B_BAD_INDEX. n is out−of−bounds.

 load_add_on() , unload_add_on()

image_id load_add_on(const char *pathname)

status_t unload_add_on(image_id image)

 Images

17

#image_type
#B_OK
#B_BAD_VALUE
#B_OK
#B_BAD_IMAGE_ID
#B_BAD_INDEX

load_add_on() loads an add−on image, identified by pathname, into your application's address space.

• pathname can be absolute or relative; if it's relative, it's reckoned off the base path specified by the ADDON_PATH environment variable.

• The function returns an image_id (a positive integer) that represents the loaded image. Image ID numbers are unique across the system.

An example that demonstrates the use of load_add_on() is given in "Loading an Add−on Image."

You can load the same add−on image twice; each time you load the add−on a new, unique image_id is created and returned.

unload_add_on() removes the add−on image identified by the argument. The image's symbols are removed, and the memory that they represent
is freed. If the argument doesn't identify a valid image, the function returns B_ERROR. Otherwise, it returns B_OK.

RETURN CODES

Positive image_id value (load) or B_OK (unload). Success.

• B_ERROR. The image couldn't be loaded (for whatever reason), or image isn't a valid image ID.

 load_image()

thread_id load_image(int argc,
const char **argv,

 const char **env)

Loads an app image into the system (it doesn't load the image into the caller's address space), creates a separate team for the new application, and
spawns and returns the ID of the team's main thread. The image is identified by the pathname given in argv[0].

The arguments are passed to the image's main() function (they show up there as the function's similarly named arguments):

• argc gives the number of entries that are in the argv array.

• The first string in the argv array must be the name of the image file. You then install any other arguments you want in the array, and
terminate the array with a NULL entry. Note that the value of argc shouldn't count argv's terminating NULL.

• envp is an array of environment variables that are also passed to main(). Typically, you use the global environ pointer:

 extern char **environ;

 load_image(..., environ);

The argv and envp arrays are copied into the new thread's address space. If you allocated either of these arrays, it's safe to free them immediately after
load_image() returns.

The thread that's returned by load_image() is in a suspended state. To start the thread running, you pass the thread_id to
resume_thread() or wait_for_thread().

An example that demonstrates the use of load_image() is given in "Loading an App Image."

RETURN CODES

• Positive integers. Success.

• B_ERROR. Failure, for whatever reason.

 Images

18

#B_ERROR
#B_OK
#B_OK
#B_ERROR
#TempoChange(),SprayTempoChange()
#B_ERROR

 Port Concepts
A port is a system−wide message repository into which any thread can copy a buffer of data, and from which any thread can then retrieve the buffer.
This repository is implemented as a first−in/first−out message queue: A port stores its messages in the order in which they're received, and it
relinquishes them in the order in which they're stored. Each port has its own message queue.

 Creating and Destroying a Port

The create_port() function creates a new port and assigns it a unique, system−wide port_id number. Although ports are accessible to all
threads, the port_id numbers aren't disseminated by the operating systemthere's no "find port" function. If you create a port and want some other
thread to be able to write to or read from it, you have to broadcast the port_id number to that thread.

A port is owned by the team in which it was created. When a team dies (when all its threads are killed), the ports that belong to the team are deleted. A
team can bestow ownership of its ports to some other team through the set_port_owner() function.

If you want explicitly get rid of a port, you call delete_port(). You can delete any port, not just those that are owned by the team of the calling
thread. When you delete a port, all of its unread messages are thrown away. If you want to read this messages, but you don't want any new messages to
arrive in the meantime, you should call close_port() before deleting the port. Note that you can't reopen a closed port; after you get done reading
the port's messages, you're expected to delete the port.

 The Message Queue: Reading and Writing Port Messages

The length of a port's message queuethe number of messages that it can hold at a timeis set when the port is created.

The functions write_port() and read_port() manipulate a port's message queue: write_port() places a message at the tail of the port's
message queue; read_port() removes the message at the head of the queue and returns it the caller.write_port() blocks if the queue is full; it
returns when room is made in the queue by an invocation of read_port(). Similarly, if the queue is empty, read_port() blocks until
write_port() is called.

You can provide a timeout for your port−writing and port−reading operations by using the "full−blown" functions write_port_etc() and
read_port_etc(). By supplying a timeout, you can ensure that your port operations won't block forever.

Although each port has its own message queue, all ports share a global "queue slot" poolthere are only so many message queue slots that can be used
by all ports taken cumulatively. If too many port queues are allowed to fill up, the slot pool will drain, which will cause write_port() calls on
less−than−full ports to block. To avoid this situation, you should make sure that your write_port() and read_port() calls are reasonably
balanced.

The write_port() and read_port() functions are the only way to traverse a port's message queue. There's no notion of "peeking" at the
queue's unread messages, or of erasing messages that are in the queue.

 Port Messages

A port messagethe data that's sent through a portconsists of a "message code" and a "message buffer." Either of these elements can be used however
you like, but they're intended to fit these purposes:

• The message code (a single four−byte value) should be a mask, flag, or other predictable value that gives a general representation of the
flavor or import of the message. For this to work, the sender and receiver of the message must agree on the meanings of the values that the
code can take.

• The data in the message buffer can elaborate upon the code, identify the sender of the message, or otherwise supply additional information.
The length of the buffer isn't restricted. To get the length of the message buffer that's at the head of a port's queue, you call the
port_buffer_size() function.

The message that you pass to write_port() is copied into the port. After write_port() returns, you may free the message data without
affecting the copy that the port holds.

When you read a port, you have to supply a buffer into which the port mechanism can copy the message. If the buffer that you supply isn't large
enough to accommodate the message, the unread portion will be lostthe next call to read_port() won't finish reading the message.

You typically allocate the buffer that you pass to read_port() by first calling port_buffer_size(), as shown below:

 char *buf = NULL;
 ssize_t size;
 int32 code;

 /* We>ll assume that my_port is valid.
 * port_buffer_size() will block until a message shows up.
 */
 if ((size = port_buffer_size(my_port)) < B_OK)
 /* Handle the error */

 if (size > 0)
 buf = (char *)malloc(size);

 if (buf) {
 /* Now we can read the buffer. */
 if (read_port(my_port, &code, (void *)buf, size) < B_OK)
 /* Handle the error */

Obviously, there's a race condition (in the example) between port_buffer_size() and the subsequent read_port() callsome other thread
could read the port in the interim. If you're going to use port_buffer_size() as shown in the example, you shouldn't have more than one thread
reading the port at a time.

As stated in the example, port_buffer_size() blocks until a message shows up. If you don't want to (potentially) block forever, you should use

19

the port_buffer_size_etc() version of the function. As with the other ...etc() functions, port_buffer_size_etc() provides a
timeout option.

 Port Concepts

20

 Ports
Declared in: be/kernel/OS.h

Library: libroot.so

A port is a system−wide message repository into which any thread can copy a buffer of data, and from which any thread can then retrieve the buffer.
This repository is implemented as a first−in/first−out message queue: A port stores its messages in the order in which they're received, and it
relinquishes them in the order in which they're stored. Each port has its own message queue.

Ports are largely subsumed by the Application Kit's BMessage class (and relatives). The two features of ports that you can't get at the BMessage level
are:

• Ports let you set the length of the message queue.

• Ports can be used in C code (as opposed to C++).

For most applications, these are inessential additions.

For more information on ports, see "Port Concepts".

 Port Functions

 create_port()

port_id create_port(int32 queue_length, const char *name)

Creates a new port and returns its port_id number. The port's name is set to name and the length of its message queue is set to queue_length.
Neither the name nor the queue length can be changed once they're set. The name shouldn't exceed B_OS_NAME_LENGTH (32) characters.

In setting the length of a port's message queue, you're telling it how many messages it can hold at a time. When the queue is filledwhen it's holding
queue_length messagessubsequent invocations of write_port() (on that port) block until room is made in the queue (through calls to
read_port()) for the additional messages. Once the queue length is set by create_port(), it can't be changed.

This function sets the owner of the port to be the team of the calling thread. Ownership can subsequently be transferred through the
set_port_owner() function. When a port's owner dies (when all the threads in the team are dead), the port is automatically deleted. If you want to
delete a port prior to its owner's death, use the delete_port() function.

RETURN CODES

• B_BAD_VALUE. queue_length is too big or less than zero.

• B_NO_MORE_PORTS. The system couldn't allocate another port.

 close_port()

status_t close_port(port_id port)

Closes the port so no more messages can be written to it. After you close a port, you can call read_port() on it, but a write_port() call will
return B_BAD_PORT_ID. You can't reopen a closed port; you call this function so you can read through a port's unread messages prior to deleting the
port, while ensuring that no new messages will show up. After you've read the messages, you should call delete_port() on port.

RETURN CODES

• B_OK. port is now closed.

• B_BAD_PORT_ID. port doesn't identify an open port.

 delete_port()

status_t delete_port(port_id port)

Deletes the given port. The port's message queue doesn't have to be emptyyou can delete a port that's holding unread messages. Threads that are
blocked in read_port() or write_port() calls on the port are automatically unblocked (and return B_BAD_SEM_ID).

The thread that calls delete_port() doesn't have to be a member of the team that owns the port; any thread can delete any port.

21

OS.h
#BMessage
#BMessage
#B_BAD_VALUE
#B_NO_MORE_PORTS
#B_BAD_PORT_ID
#B_OK
#B_BAD_PORT_ID
#B_BAD_SEM_ID

RETURN CODES

• B_OK. The port was deleted.

• B_BAD_PORT_ID. port isn't a valid port.

 find_port()

port_id find_port(const char *port_name)

Returns the port_id of the named port. port_name should be no longer than 32 characters (B_OS_NAME_LENGTH).

RETURN CODES

• B_NAME_NOT_FOUND. port_name doesn't name an existing port.

 get_port_info() , get_next_port_info()

status_t get_port_info(port_id port , port_info *info)

status_t get_next_port_info(team_id team,
 uint32 *cookie,
 port_info *info)

Copies information about a particular port into the port_info structure designated by info. The first version of the function designates the port
directly, by port_id.

The get_next_port_info() version lets you step through the list of a team's ports through iterated calls on the function. The team argument
identifies the team you want to look at; a team value of 0 means the team of the calling thread. The cookie argument is a placemark; you set it to 0 on
your first call, and let the function do the rest. The function returns B_BAD_VALUE when there are no more ports to visit:

 /* Get the port_info for every port in this team. */
 port_info info;
 int32 cookie = 0;

 while (get_next_port_info(0, &cookie, &info) == B_OK)
 ...

The information in the port_info structure is guaranteed to be internally consistent, but the structure as a whole should be consider to be
out−of−date as soon as you receive it. It provides a picture of a port as it exists just before the info−retrieving function returns.

RETURN CODES

• B_OK. The port was found; info contains valid information.

• B_BAD_VALUE. port doesn't identify an existing port, team doesn't identify an existing team, or there are no more ports to visit.

 port_buffer_size() , port_buffer_size_etc()

ssize_t port_buffer_size(port_id port)

ssize_t port_buffer_size_etc(port_id port,
 uint32 flags,
 bigtime_t timeout)

These functions return the length (in bytes) of the message buffer that's at the head of port's message queue. You call this function in order to allocate
a sufficiently large buffer in which to retrieve the message data.

The port_buffer_size() function blocks if the port is currently empty. It unblocks when a write_port() call gives this function a buffer to
measure (even if the buffer is 0 bytes long), or when the port is deleted.

The port_buffer_size_etc() function lets you set a limit on the amount of time the function will wait for a message to show up. To set the
limit, you pass B_TIMEOUT as the flags argument, and set timeout to the amount of time, in microseconds, that you're willing to wait.

RETURN CODES

• B_BAD_PORT_ID. port doesn't identify an existing port, or the port was deleted while the function was blocked.

• B_TIMED_OUT. The timeout limit expired.

 Ports

22

#B_BAD_PORT_ID
#B_NAME_NOT_FOUND
#B_BAD_VALUE
#B_OK
#B_BAD_VALUE
#B_BAD_PORT_ID
#B_TIMED_OUT

• B_WOULD_BLOCK. You asked for a timeout of 0, but there are no messages in the queue.

See also: read_port()

 port_count()

int32 port_count(port_id port)

Returns the number of messages that are currently in port's message queue. This is the number of messages that have been written to the port through
calls to write_port() but that haven't yet been picked up through corresponding read_port() calls.

This function is provided mostly as a convenience and a semi−accurate debugging tool. The value that it returns is
inherently undependable: There's no guarantee that additional read_port() or write_port() calls won't change the
count as this function is returning.

RETURN CODES

• B_BAD_PORT_ID. port doesn't identify an existing port.

See also: get_port_info()

 read_port() , read_port_etc()

ssize_t read_port(port_id port,
 int32 *msg_code,
 void *msg_buffer,
 size_t buffer_size)

ssize_t read_port_etc(port_id port,
 int32 *msg_code,
 void *msg_buffer,
 size_t buffer_size,
 uint32 flags,
 bigtime_t timeout)

These functions remove the message at the head of port's message queue and copy the messages's contents into the msg_code and
msg_buffer arguments. The size of the msg_buffer buffer, in bytes, is given by buffer_size. It's up to the caller to ensure that the message buffer is
large enough to accommodate the message that's being read. If you want a hint about the message's size, you should call
port_buffer_size() before calling this function.

If port's message queue is empty when you call read_port(), the function will block. It returns when some other thread writes a message to the
port through write_port(). A blocked read is also unblocked if the port is deleted.

The read_port_etc() function lets you set a limit on the amount of time the function will wait for a message to show up. To set the limit, you
pass B_TIMEOUT as the flags argument, and set timeout to the amount of time, in microseconds, that you're willing to wait.

RETURN CODES

A successful call returns the number of bytes that were written into the msg_buffer argument.

• B_BAD_PORT_ID. port doesn't identify an existing port, or the port was deleted while the function was blocked.

• B_TIMED_OUT. The timeout limit expired.

• B_WOULD_BLOCK. You asked for a timeout of 0, but there are no messages in the queue.

See also: write_port() , port_buffer_size()

 set_port_owner()

status_t set_port_owner(port_id port, team_id team)

Transfers ownership of the designated port to team. A port can only be owned by one team at a time; by setting a port's owner, you remove it from its

 Ports

23

#B_WOULD_BLOCK
#B_BAD_PORT_ID
#B_BAD_PORT_ID
#B_TIMED_OUT
#B_WOULD_BLOCK

current owner.

There are no restrictions on who can own a port, or on who can transfer ownership. In other words, the thread that calls
set_port_owner() needn't be part of the team that currently owns the port, nor must you only assign ports to the team that owns the calling thread
(although these two are the most likely scenarios).

Port ownership is meaningful for one reason: When a team dies (when all its threads are dead), the ports that are owned by that team are freed.
Ownership, otherwise, has no significanceit carries no special privileges or obligations.

To discover a port's owner, use the get_port_info() function.

RETURN CODES

• B_OK. Ownership was successfully transferred.

• B_BAD_PORT_ID. port doesn't identify a valid port.

• B_BAD_TEAM_ID. team doesn't identify a valid team.

See also: get_port_info()

 write_port() , write_port_etc()

status_t write_port(port_id port,
 int32 msg_code,
 void *msg_buffer,
 size_t buffer_size)

status_t write_port_etc(port_id port,
 int32 msg_code,
 void *msg_buffer,
 size_t buffer_size,
 uint32 flags,
 bigtime_t timeout)

These functions place a message at the tail of port's message queue. The message consists of msg_code and msg_buffer:

• msg_code holds the "message code." This is a mask, flag, or other predictable value that gives a general representation of the message.

• msg_buffer is a pointer to a buffer that can be used to supply additional information. You pass the length of the buffer, in bytes, as the
value of the buffer_size argument. The buffer can be arbitrarily long.

If the port's queue is full when you call write_port() , the function will block. It returns when a read_port() call frees a slot in the queue for
the new message. A blocked write_port() will also return if the target port is deleted or closed.

The write_port_etc() function lets you set a limit on the amount of time the function will wait for a free queue slot. To set the limit, you pass
B_TIMEOUT as the flags argument, and set timeout to the amount of time, in microseconds, that you're willing to wait.

RETURN CODES

• B_OK. The port was successully written to.

• B_BAD_PORT_ID. port doesn't identify an open port, or the port was deleted while the function was blocked.

• B_TIMED_OUT. The timeout limit expired.

• B_WOULD_BLOCK. You asked for a timeout of 0, but there are no free slots in the message queue.

See also: read_port()

 Port Structures and Constants

 port_info

struct {
 port_id port;
 team_id team;
 char name[B_OS_NAME_LENGTH];
 int32 capacity;
 int32 queue_count;
 int32 total_count;
 } port_info

 Ports

24

#B_OK
#B_BAD_PORT_ID
#B_BAD_TEAM_ID
#B_OK
#B_BAD_PORT_ID
#B_TIMED_OUT
#B_WOULD_BLOCK

The port_info structure provides information about a port. You retrieve one of these structures through get_port_info() or
get_next_port_info().

• port. The port_id number of the port.

• team. The team_id of the port's owner.

• name. The name assigned to the port.

• capacity. The length of the port's message queue.

• queue_count. The number of messages currently in the queue.

• total_count. The total number of message that have been read from the port.

Note that the total_count number doesn't include the messages that are currently in the queue.

 Ports

25

 Semaphores
Declared in: be/kernel/OS.h

Library: libroot.so

A semaphore is a token that's used to synchronize multiple threads. The semaphore concept is simple: To enter into a semaphore−protected "critical
section", a thread must first "acquire" the semaphore, through the acquire_sem() function. When it passes out of the critical section, the thread
"releases" the semaphore through release_sem().

The advantage of the semaphore system is that if a thread can't acquire a semaphore (because the semaphore is yet to be released by the previous
acquirer), the thread blocks in the acquire_sem() call. While it's blocked, the thread doesn't waste any cycles.

For the full story about semaphores, see "Semaphore Concepts". For some code examples, see "Semaphore Examples".

 Semaphore Functions

 acquire_sem() , acquire_sem_etc()

status_t acquire_sem(sem_id sem)

status_t acquire_sem_etc(sem_id sem,
 uint32 count,
 uint32 flags,
 bigtime_t timeout)

These functions attempt to acquire the semaphore identified by the sem argument. Except in the case of an error, acquire_sem() doesn't return
until the semaphore has actually been acquired.

acquire_sem_etc() is the full−blown acquisition version: It's essentially the same as acquire_sem(), but, in addition, it lets you acquire a
semaphore more than once, and also provides a timeout facility:

• The count argument lets you specify that you want the semaphore to be acquired count times. This means that the semaphore's thread
count is decremented by the specified amount. It's illegal to specify a count that's less than 1.

• To enable the timeout, you add B_ABSOLUTE_TIMEOUT or B_RELATIVE_TIMEOUT to the flags argument. timeout to the amount of
time, in microseconds, that you're willing to wait, measured relative to now (relative timeout), or in comparison to the value returned by
system_time() (absolute timeout). The function returns B_TIMED_OUT if the semaphore isn't acquired within the specified time. If you
specify a relative timeout of 0 and the semaphore isn't immediately available, the function immediately returns B_WOULD_BLOCK.

The Kernel Kit defines two other semaphore−acquisition flag constants (B_CAN_INTERRUPT and
B_CHECK_PERMISSION). These additional flags are used by device driversadding these flags into a "normal" (or
"user−level") acquisition has no effect. However, you should be aware that the B_CHECK_PERMISSION flag is always
added in to user−level semaphore acquisition in order to protect system−defined semaphores.

Other than the timeout and the acquisition count, there's no difference between the two acquisition functions. Specifically, any semaphore can be
acquired through either of these functions; you always release a semaphore through release_sem() (or release_sem_etc()) regardless of
which function you used to acquire it.

To determine if the semaphore is available, the function looks at the semaphore's thread count (before decrementing it):

• If the thread count is positive, the semaphore is available and the current acquisition succeeds. The acquire_sem() (or
acquire_sem_etc()) function returns immediately upon acquisition.

• If the thread count is zero or less, the calling thread is placed in the semaphore's thread queue where it waits for a corresponding
release_sem() call to de−queue it (or for the timeout to expire).

RETURN CODES

• B_NO_ERROR. The semaphore was successfully acquired.

• B_BAD_SEM_ID. The sem argument doesn't identify a valid semaphore. It's possible for a semaphore to become invalid while an
acquisitive thread is waiting in the semaphore's queue. For example, if your thread calls acquire_sem() on a valid (but unavailable)
semaphore, and then some other thread deletes the semaphore, your thread will return B_BAD_SEM_ID from its call to
acquire_sem().

• B_INTERRUPTED. The acquisition was interrupted by a signal. In this case, the semaphore has not been acquired.

The other return values apply to acquire_sem_etc() only:

• B_BAD_VALUE. Illegal count value (less than 1).

26

OS.h
#status_t
#status_t
#B_TIMED_OUT
#B_WOULD_BLOCK
#B_NO_ERROR
#B_BAD_SEM_ID
#B_BAD_SEM_ID
#B_INTERRUPTED
#B_BAD_VALUE

• B_WOULD_BLOCK. You specified a relative timeout of 0 and the semaphore isn't available.

• B_TIMED_OUT. The timeout expired (for all values of timeout other than 0).

 create_sem()

sem_id create_sem(uint32 thread_count, const char *name)

Creates a new semaphore and returns a system−wide sem_id number that identifies it. The arguments are:

• thread_count initializes the semaphore's thread count, the counting variable that's decremented and incremented as the semaphore is
acquired and released (respectively). You can pass any non−negative number as the count, but you typically pass either 1 or 0.

• name is an optional string name that you can assign to the semaphore. The name is meant to be used only for debugging. A semaphore's
name needn't be uniqueany number of semaphores can have the same name.

Valid sem_id numbers are positive integers. You should always check the validity of a new semaphore through a construction such as

 if ((my_sem = create_sem(1,"My Semaphore")) < B_OK)
 /* If it>s less than B_NO_ERROR, my_sem is invalid. */

create_sem() sets the new semaphore's owner to the team of the calling thread. Ownership may be re−assigned through the
set_sem_owner() function. When the owner dies (when all the threads in the team are dead), the semaphore is automatically deleted. The owner is
also signficant in a delete_sem() call: Only those threads that belong to a semaphore's owner are allowed to delete that semaphore.

RETURN CODES

• B_BAD_VALUE. Invalid thread_count value (less than 0).

• B_NO_MEMORY. Not enough memory to allocate the semaphore's name.

• B_NO_MORE_SEMS. All valid sem_id numbers are being used.

 delete_sem()

status_t delete_sem(sem_id sem)

Deletes the semaphore identified by the argument. If there are any threads waiting in the semaphore's thread queue, they're immediately unblocked.

This function may only be called from a thread that belongs to the semaphore's owner.

RETURN CODES

• B_NO_ERROR. The semaphore was successfully deleted.

• B_BAD_SEM_ID. sem is invalid, or the calling thread doesn't belong to the team that owns the semaphore.

 get_sem_count()

status_t get_sem_count(sem_id sem, int32 *thread_count)

For amusement purposes only; never predicate your code on this function.

Returns, by reference in thread_count, the value of the semaphore's thread count variable:

 Semaphores

27

#B_WOULD_BLOCK
#B_TIMED_OUT
#B_BAD_VALUE
#B_NO_MEMORY
#B_NO_MORE_SEMS
#B_NO_ERROR
#B_BAD_SEM_ID

• A positive thread count (n) means that there are no threads in the semaphore's queue, and the next n acquire_sem() calls will return
without blocking.

• If the count is zero, there are no queued threads, but the next acquire_sem() call will block.

• A negative count (−n) means there are n threads in the semaphore's thread queue and the next call to acquire_sem() will block.

By the time this function returns and you get a chance to look at the thread_count value, the semaphore's thread count may have changed. Although
watching the thread count might help you while you're debugging your program, this function shouldn't be an integral part of the design of your
application.

RETURN CODES

• B_NO_ERROR. Success.

• B_BAD_SEM_ID. sem is invalid(thread_count isn't changed).

 get_sem_info() , get_next_sem_info()

status_t get_sem_info(sem_id sem, sem_info *info)

status_t get_next_sem_info(team_id team,
 uint32 *cookie,
 sem_info *info)

Copies information about a particular semaphore into the sem_info structure designated by info. The first version of the function designates the
sempahore directly, by sem_id.

The get_next_sem_info() version lets you step through the list of a team's semaphores through iterated calls on the function. The
team argument identifies the team you want to look at; a team value of 0 means the team of the calling thread. The cookie argument is a placemark;
you set it to 0 on your first call, and let the function do the rest. The function returns B_BAD_VALUE when there are no more sempahores to visit:

 /* Get the sem_info for every sempahore in this team. */
 sem_info info;
 int32 cookie = 0;

 while (get_next_sem_info(0, &cookie, &info) == B_OK)
 ...

RETURN CODES

• B_NO_ERROR. Success.

• B_BAD_SEM_ID. Invalid sem value.

• B_BAD_TEAM_ID. Invalid team value.

 release_sem() , release_sem_etc()

status_t release_sem(sem_id sem)

status_t release_sem_etc(sem_id sem , int32 count , uint32 flags)

The release_sem() function de−queues the thread that's waiting at the head of the semaphore's thread queue (if any), and increments the
semaphore's thread count. release_sem_etc() does the same, but for count threads.

Normally, releasing a semaphore automatically invokes the kernel's scheduler. In other words, when your thread calls release_sem(), you're
pretty much guaranteed that some other thread will be switched in immediately afterwards, even if your thread hasn't gotten its fair share of CPU time.
If you want to subvert this automatism, call release_sem_etc() with a flags value of B_DO_NOT_RESCHEDULE. Preventing the automatic
rescheduling is particularly useful if you're releasing a number of different semaphores all in a row: By avoiding the rescheduling you can prevent
some unnecessary context switching.

RETURN CODES

• B_NO_ERROR. The semaphore was successfully released.

• B_BAD_SEM_ID. Invalid sem value.

• B_BAD_VALUE. Invalid count value (less than zero; release_sem_etc() only).

See also: acquire_sem()

 Semaphores

28

#B_NO_ERROR
#B_BAD_SEM_ID
#B_BAD_VALUE
#B_NO_ERROR
#B_BAD_SEM_ID
#B_BAD_TEAM_ID
#status_t
#status_t
#Integer%20Types
#Integer%20Types
#B_NO_ERROR
#B_BAD_SEM_ID
#B_BAD_VALUE

 set_sem_owner()

status_t set_sem_owner(sem_id sem , team_id team)

Transfers ownership of the designated semaphore to team. A semaphore can only be owned by one team at a time; by setting a semaphore's owner,
you remove it from its current owner.

There are no restrictions on who can own a semaphore, or on who can transfer ownership. In practice, however, the only reason you should ever
transfer ownership is if you're writing a device driver and you need to bequeath a semaphore to the kernel (the team of which is known, for this
purpose, as B_SYSTEM_TEAM).

Semaphore ownership is meaningful for two reason:

• When a team dies (when all its threads are dead), the semaphores that are owned by that team are deleted.

• Threads can only by deleted by threads that belongs to a semaphore's owner.

To discover a semaphore's owner, use the get_sem_info() function.

RETURN CODES

• B_NO_ERROR. Ownership was successfully transferred.

• B_BAD_SEM_ID. Invalid sem value.

• B_BAD_TEAM_ID. Invalid team value.

 Semaphore Structures and Types

 sem_id

typedef int32 sem_id;

sem_id numbers identify semaphores. The id is assigned when the semaphore is created (create_sem()). The values are unique across the system.

 sem_info

typedef struct sem_info {
sem_id sem;
team_id team;
char name[B_OS_NAME_LENGTH];
int32 count;
thread_id latest_holder;

 }

The sem_info structure supplies information about a semaphore. You retrieve the structure through the get_sem_info() function. The information
in the sem_info structure is guaranteed to be internally consistent, but the structure as a whole should be consider to be out−of−date as soon as you
receive it. It provides a picture of a semaphore as it exists just before the info−retrieving function returns.

The fields are:

• sem. The sem_id number of the semaphore.

• team. The team_id of the semaphore's owner.

• name. The name assigned to the semaphore.

• count. The semaphore's thread count.

• latest_holder. The thread that most recently acquired the semaphore.

The lastest_holder field is highly undependable; in some cases, the kernel doesn't even record the semaphore acquirer.
Although you can use this field as a hint while debugging, you shouldn't take it too seriously. Love, Mom.

 Semaphores

29

#status_t
#B_NO_ERROR
#B_BAD_SEM_ID
#B_BAD_TEAM_ID
#Integer%20Types

 Semaphore Constants

 Semaphore Control Flags

• B_CAN_INTERRUPT Tells the kernel that the semaphore can be interrupted by a signal.

• B_DO_NOT_RESCHEDULE Tells the scheduler not to run after a semaphore is released. In other words, the thread that just released the
semaphore gets to keep running.

• B_CHECK_PERMISSION Makes sure that the semaphore acquirer/releaser is running at the proper level. This is always added into
user−level acquisition and release.

• B_RELATIVE_TIMEOUT Used to set a timeout that's relative to now.

• B_ABSOLUTE_TIMEOUT Used to set a timeout that's measured against the system clock.

• B_TIMEOUT Obsolete; use B_RELATIVE_TIMEOUT .

 Semaphores

30

 Semaphore Concepts
A semaphore acts as a key that a thread must acquire in order to continue execution. Any thread that can identify a particular semaphore can attempt to
acquire it by passing its sem_id identifiera system−wide number that's assigned when the semaphore is createdto the acquire_sem() function.
The function blocks until the semaphore is actually acquired.

An alternate function, acquire_sem_etc() lets you specify the amount of time you're willing to wait for the semaphore
to be acquired, and let you acquire the semaphore more than once in a single go. Unless otherwise noted, characteristics
ascribed to acquire_sem() apply to acquire_sem_etc() as well.)

When a thread acquires a semaphore, that semaphore (typically) becomes unavailable for acquisition by other threads. The semaphore remains
unavailable until it's passed in a call to the release_sem() function.

The code that a semaphore "protects" lies between the calls to acquire_sem() and release_sem(). The disposition of these functions in your
code usually follows this pattern:

 if (acquire_sem(my_semaphore) == B_NO_ERROR) {
 /* Protected code goes here. */
 release_sem(my_semaphore);
 }

Keep in mind that...

• The calls to the acquire and release functions needn't be locally balanced (although this is by far the most common use). A semaphore can
be acquired within one function and released in another. Acquisition and release of the same semaphore can even be performed by two
different threads.

• Checking the value returned by acquire_sem() is extremely important. If an acquire−blocked thread is unblocked by a signal (a return
o f B_INTERRUPTED), the thread shouldn't procede to the critical section.

 The Thread Queue

Every semaphore has its own thread queue: This is a list that identifies the threads that are waiting to acquire the semaphore. A thread that attempts to
acquire an unavailable semaphore is placed at the tail of the semaphore's thread queue where it sits blocked in the acquire_sem() call. Each call
to release_sem() umblocks the thread at the head of that semaphore's queue, thus allowing the thread to return from its call to
acquire_sem().

Semaphores don't discriminate between acquisitive threadsthey don't prioritize or otherwise reorder the threads in their queuesthe oldest waiting thread
is always the next to acquire the semaphore.

 The Thread Count

To assess availability, a semaphore looks at its thread count. This is a counting variable that's initialized when the semaphore is created. Ostensibly, a
thread count's initial value (which is passed as the first argument to create_sem()) is the number of threads that can acquire the semaphore at a
time. (As we'll see later, this isn't the entire story, but it's good enough for now.) For example, a semaphore that's used as a mutually exclusive lock
takes an initial thread count of 1in other words, only one thread can acquire the semaphore at a time.

An initial thread count of 1 is by far the most common use; a thread count of 0 is also useful. Other counts are much less
common.

Calls to acquire_sem() and release_sem() alter the semaphore's thread count: acquire_sem() decrements the count, and
release_sem() increments it. When you call acquire_sem(), the function looks at the thread count (before decrementing it) to determine if the
semaphore is available:

• If the count is greater than zero, the semaphore is available for acquisition, so the function returns immediately.

• If the count is zero or less, the semaphore is unavailable, and the thread is placed in the semaphore's thread queue.

The initial thread count isn't an inviolable limit on the number of threads that can acquire a given semaphoreit's simply the initial value for the
sempahore's thread count variable. For example, if you create a semaphore with an initial thread count of 1 and then immediately call
release_sem() five times, the semaphore's thread count will increase to 6. Furthermore, although you can't initialize the thread count to
less−than−zero, an initial value of zero itself is commonit's an integral part of using semaphores to impose an execution order (as demonstrated later).

Summarizing the description above, there are three significant thread count value ranges:

• A positive thread count (n) means that there are no threads in the semaphore's queue, and the next n acquire_sem() calls will return
without blocking.

• If the count is 0, there are no queued threads, but the next acquire_sem() call will block.

• A negative count (−n) means there are n threads in the semaphore's thread queue, and the next call to acquire_sem() will block.

31

#B_INTERRUPTED

Although it's possible to retrieve the value of a semaphore's thread count (by looking at a field in the semaphore's sem_info structure, as described
later), you should only do so for amusementwhile you're debugging, for example.

You should never predicate your code on the basis of a semaphore's thread count.

 Deleting a Semaphore

Every semaphore is owned by a team (the team of the thread that called create_sem()). When the last thread in a team dies, it takes the team's
semaphores with it.

Prior to the death of a team, you can explicitly delete a semaphore through the delete_sem() call. Note, however, that delete_sem() must be
called from a thread that's a member of the team that owns the semaphoreyou can't delete another team's semaphores.

You're allowed to delete a semaphore even if it still has threads in its queue. However, you usually want to avoid this, so deleting a semaphore may
require some thought: When you delete a semaphore (or when it dies naturally), all its queued threads are immediately allowed to continuethey all
return from acquire_sem() at once. You can distinguish between a "normal" acquisition and a "semaphore deleted" acquisition by the value that's
returned by acquire_sem() (the specific return values are listed in the function descriptions, below).

 Inter−application Semaphores

The sem_id number that identifies a semaphore is a system−wide tokenthe sem_id values that you create in your application will identify your
semaphores in all other applications as well. It's possible, therefore, to broadcast the sem_id numbers of the semaphores that you create and so allow
other applications to acquire and release thembut it's not a very good idea.

A semaphore is best controlled if it's created, acquired, released, and deleted within the same team.

If you want to provide a protected service or resource to other applications, you should accept messages from other applications and then spawn
threads that acquire and release the appropriate semaphores.

 Semaphore Concepts

32

 Semaphore Examples
The following sections provides examples of typical semaphore use. For the full story on semaphores, see Semaphores.

 Semaphore Example 1: Locking
The most typical use of a semaphore is to protect a chunk of code that can only be executed by one thread at a time. The semaphore acts as a lock;
acquire_sem() locks the code, release_sem() releases it. Semaphores that are used as locks are (almost always) created with a thread count
of 1.

As a simple example, let's say you keep track of a maximum value like this:

 /* max_val is a global. */
 uint32 max_val = 0;
 ...

 /* bump_max() resets the max value, if necessary. */
 void bump_max(uint32 new_value)
 {
 if (new_value > max_value)
 max_value = new_value;
 }

bump_max() isn't thread safe; there's a race condition between the comparison and the assignment. So we protect it with a semaphore:

 sem_id max_sem;
 uint32 max_val = 0;

 ...
 /* Initialize the semaphore during a setup routine. */
 status_t init()
 {
 if ((max_sem = create_sem(1, "max_sem")) < B_NO_ERROR)
 return B_ERROR;
 ...
 }
 void bump_max(uint32 new_value)
 {
 if (acquire_sem(max_sem) != B_NO_ERROR)
 return;
 if (new_value > max_value)
 max_value = new_value;
 release_sem();
 }

 Semaphore Example 2: Benaphores
A "benaphore" is a combination of an atomic variable and a semaphore that can improve locking efficiency. If you're using a semaphore as shown in
the previous example, you should consider using a benaphore instead (if you can).

Here's the example re−written to use a benaphore:

 sem_id max_sem;
 uint32 max_val = 0;
 int32 ben_val = 0;

 status_t init()
 {
 /* This time we initialized the semaphore to 0. */
 if ((max_sem = create_sem(0, "max_sem")) < B_NO_ERROR)
 return B_ERROR;
 ...
 }
 void bump_max(uint32 new_value)
 {
 int32 previous = atomic_add(&ben_val, 1);
 if (previous >= 1)
 if (acquire_sem(max_sem) != B_NO_ERROR)
 goto get_out;

 if (new_value > max_value)
 max_value = new_value;

 get_out:
 previous = atomic_add(&ben_val, −1);
 if (previous > 1)
 release_sem(max_sem);
 }

The point, here, is that acquire_sem() is called only if it's known (by checking the previous value of ben_val) that some other thread is in the
middle of the critical section. On the releasing end, the release_sem() is called only if some other thread has since entered the function (and is
now blocked in the acquire_sem() call). An important point, here, is that the semaphore is initialized to 0.

 Semaphore Example 3: Imposing an Execution Order
Semaphores can also be used to coordinate threads that are performing separate operations, but that need to perform these operations in a particular
order. In the following example, we have a global buffer that's accessed through separate reading and writing functions. Furthermore, we want writes

33

and reads to alternate, with a write going first.

We can lock the entire buffer with a single semaphore, but to enforce alternation we need two semaphores:

 sem_id write_sem, read_sem;
 char buffer[1024];

 /* Initialize the semaphores */
 status_t init()
 {
 if ((write_sem = create_sem(1, "write")) < B_NO_ERROR) {
 return;
 if ((read_sem = create_sem(0, "read")) < B_NO_ERROR) {
 delete_sem(write_sem);
 return;
 }
 }

 status_t write_buffer(const char *src)
 {
 if (acquire_sem(write_sem) != B_NO_ERROR)
 return B_ERROR;

 strncpy(buffer, src, 1024);

 release_sem(read_sem);
 }

 status_t read_buffer(char *dest, size_t len)
 {
 if (acquire_sem(read_sem) != B_NO_ERROR)
 return B_ERROR;

 strncpy(dest, buffer, len);

 release_sem(write_sem);
 }

The initial thread counts ensure that the buffer will be written to before it's read: If a reader arrives before a writer, the reader will block until the writer
releases the read_sem semaphore.

 Semaphore Examples

34

 System Information
Declared in: be/kernel/OS.h

Library: libroot.so

The following functions, types, and structures convey information about the system, such as the number of CPUs, when the kernel was built, and
whether your computer is on fire.

 System Info Functions

 get_system_info()

status_t get_system_info(system_info *info)

The get_system_info() function tells you more than you want to know about the physical capacities of your computer and other statistics of
your operating system. The function copies this information into the system_info argument info. You must allocate info before passing it in.

RETURN CODES

get_system_info() always returns B_OK.

 is_computer_on()

int32 is_computer_on(void)

Returns 1 if the computer is on. If the computer isn't on, the value returned by this function is undefined.

 is_computer_on_fire()

double is_computer_on_fire(void)

Returns the temperature of the motherboard if the computer is currently on fire. If the computer isn't on fire, the function returns some other value.

 System Info Structures and Constants

 cpu_info

typedef struct {
bigtime_t active_time;

 } cpu_info

The cpu_info structure provides information about your computer's CPU(s). You retrieve the structure by looking in the cpu_infos field of the
system_info structure. The cpu_infos field is an array that contains one cpu_info structure for each CPU on your motherboard.

active_time The number of microseconds the CPU has spent doing useful work (i.e. not busy waiting) since the machine was booted.

 cpu_type

typedef enum cpu_types {
 B_CPU_PPC_601,
 B_CPU_PPC_603,
 B_CPU_PPC_603e,

35

OS.h
#B_OK
#bigtime_t

 B_CPU_PPC_604,
 B_CPU_PPC_604e,
 B_CPU_PPC_750,
 B_CPU_PPC_686,
 B_CPU_AMD_29K,
 B_CPU_X86, Obsolete

B_CPU_MC6502,
 B_CPU_Z80,
 B_CPU_ALPHA,
 B_CPU_MIPS,
 B_CPU_HPPA,
 B_CPU_M68K,
 B_CPU_ARM,
 B_CPU_SH,
 B_CPU_SPARC,

 B_CPU_INTEL_X86 = 0x1000,
B_CPU_INTEL_PENTIUM,

 B_CPU_INTEL_PENTIUM75,
 B_CPU_INTEL_PENTIUM_486_OVERDRIVE,
 B_CPU_INTEL_PENTIUM_MMX,
 B_CPU_INTEL_PENTIUM_MMX_MODEL_4,
 B_CPU_INTEL_PENTIUM_MMX_MODEL_8,
 B_CPU_INTEL_PENTIUM75_486_OVERDRIVE,
 B_CPU_INTEL_PENTIUM_PRO,
 B_CPU_INTEL_PENTIUM_II,
 B_CPU_INTEL_PENTIUM_II_MODEL_3,
 B_CPU_INTEL_PENTIUM_II_MODEL_5,
 B_CPU_INTEL_CELERON,
 B_CPU_INTEL_PENTIUM_III,

 B_CPU_AMD_X86 = 0x1100,
 B_CPU_AMD_K5_MODEL0,
 B_CPU_AMD_K5_MODEL1,
 B_CPU_AMD_K5_MODEL2,
 B_CPU_AMD_K5_MODEL3,
 B_CPU_AMD_K6_MODEL6,
 B_CPU_AMD_K6_MODEL7,
 B_CPU_AMD_K6_MODEL8,
 B_CPU_AMD_K6_2,
 B_CPU_AMD_K6_MODEL9,
 B_CPU_AMD_K6_III,
 B_CPU_AMD_ATHLON_MODEL1,

 B_CPU_CYRIX_X86 = 0x1200,
 B_CPU_CYRIX_GXm,
 B_CPU_CYRIX_6x86MX,

 B_CPU_IDT_X86 = 0x1300,
 B_CPU_IDT_WINCHIP_C6,
 B_CPU_IDT_WINCHIP_2,

 B_CPU_RISE_X86 = 0x1400,
 B_CPU_RISE_mP6
 } cpu_type;

The B_X86_CPU constant is obsolete. All x86 CPUs are represented by specific vendor/model constants.

These constants represents different CPU vendors and models. To retrieve the constant that represents the CPU(s) that your computer uses, look in the
cpu_type field of the system_info structure.

Note that the x86 types are grouped by vendor, where the vendor is identified by the high word, and the model by the low word. Each vendor has its
own cpu_type constant, as indicated by the explicit values in the list above. If you're only interested in the vendor, mask the cpu_type value with
B_CPU_X86_VENDOR_MASK, thus:

 system_info sysinfo;
 get_system_info(&sysinfo);

 switch (sysinfo.cpu_type & B_CPU_X86_VENDOR_MASK) {
 case B_CPU_INTEL_X86: ...
 case B_CPU_AMD_X86: ...
 case B_CPU_CYRIX_x86: ...
 case B_CPU_IDT_X86: ...
 case B_CPU_RISE_X86: ...
 default:
 /* Not x86. */
 }

 System Information

36

 B_CPU_X86_VENDOR_MASK

B_CPU_X86_VENDOR_MASK

You mask your machine's cpu_type value with this constant to retrieve the CPU's vendor id (which is also a cpu_type value). If the CPU isn't an
breed of x86, applying the mask will yield 0. See the cpu_type description for an example.

 machine_id

typedef int32 machine_id[2]; Currently unused

machine_id is a 64−bit number (encoded as two 32−bit numbers) that uniquely identifies this specific computer. The id number is returned as the id
field (currently unused) of the system_info structure.

 B_MAX_CPU_COUNT

B_MAX_CPU_COUNT

This constant is set to the maximum number of CPUs that the BeOS can take advantage of. The number is machine−dependent.

 platform_type

typedef enum platform_types {
 B_BEBOX_PLATFORM = 0,
 B_MAC_PLATFORM,
 B_AT_CLONE_PLATFORM,
 B_ENIAC_PLATFORM,
 B_APPLE_II_PLATFORM,
 B_CRAY_PLATFORM,
 B_LISA_PLATFORM,
 B_TI_994A_PLATFORM,
 B_TIMEX_SINCLAIR_PLATFORM,
 B_ORAC_1_PLATFORM,
 B_HAL_PLATFORM,
 B_BESM_6_PLATFORM,
 B_MK_61_PLATFORM,
 B_NINTENDO_64_PLATFORM
 } platform_type;

These constants represent the various computer platforms that the BeOS does, has, should, might, or might not run on. To retrieve the constant for the
machine that you're running on, look in the platform_type field of the system_info structure.

 system_info

typedef struct {
machine_id id; Currently unused
bigtime_t boot_time;

 int32 cpu_count;
cpu_type cpu_type;

 int32 cpu_revision;
cpu_info cpu_infos[B_MAX_CPU_NUM];

 int64 cpu_clock_speed;
 int64 bus_clock_speed;

platform_type platform_type;
 int32 max_pages;
 int32 used_pages;
 int32 page_faults;
 int32 max_sems;
 int32 used_sems;
 int32 max_ports;
 int32 used_ports;

 System Information

37

#bigtime_t

 int32 max_threads;
 int32 used_threads;
 int32 max_teams;
 int32 used_teams;
 char kernel_name[B_FILE_NAME_LENGTH];
 char kernel_build_date[B_OS_NAME_LENGTH];
 char kernel_build_time[B_OS_NAME_LENGTH];
 int64 kernel_version;
 } system_info;

The system_info structure describes your computer's hardware and operating system, and provides information about the availability of kernel
resources (such as threads and ports). You retrieve a system_info structure through the get_system_info() function.

id

A 64−bit number
(encoded as two
int32s) that uniquely
identifies this machine.
Currently unsed.

boot_time

The time at which the
computer was last
booted, measured in
microseconds since
January 1st, 1970. You
can also get this
information through
system_time().

cpu_count
The number of CPUs
on your computer's
motherboard.

cpu_type
A constant that
represents the CPU(s)
make and model.

cpu_revision The revision number of
the CPU(s).

cpu_infos
An array of
cpu_info structures,
one for each CPU.

cpu_clock_speed
The speed (in Hz) at
which the CPU(s)
operate.

bus_clock_speed The speed (in Hz) at
which the bus operates.

platform_type
The platform type
constant that reprsents
your computer.

max_resource
used_resource

These fields give the
total number of RAM
pages, semaphores,
and so on, that the
system can create, and
the number that are
currently in use.

page_faults

The number of times
the system has read a
page of memory into
RAM due to a page
fault.

kernel_name
The filename of the
kernel (the leaf name,
not the path).

kernel_build_date Fixed−width string that

 System Information

38

#Integer%20Types

gives the date that the
kernel was built; for
example:
 Jun 5 1999

kernel_build_time Fixed−width string that gives the time of day that the kernel was built; for example:
 10:02:16

kernel_version A Be−assigned number that identifies the kernel version.

 System Information

39

 System and Time Information
Declared in: be/kernel/OS.h

Library: libroot.so

The following functions, types, and structures are used to convey basic information about the system, such as the number of CPUs, when the kernel
was built, what time it is now and whether your computer is on fire.

 System Info Functions and Structures

 get_system_info() , system_info , cpu_info , cpu_type , platform_type

status_t get_system_info(system_info *info)

struct {} system_info

struct {} cpu_info

enum cpu_type

enum platform_type

The get_system_info() function tells you more than you want to know about the physical capacities and other statistics of your operating
system. The function takes a pointer to an allocated system_info structure and fills it in.

 typedef struct {
 machine_id id;
 bigtime_t boot_time;
 int32 cpu_count;
 cpu_type cpu_type;
 int32 cpu_revision;
 cpu_info cpu_infos[B_MAX_CPU_NUM];
 int64 cpu_clock_speed;
 int64 bus_clock_speed;
 platform_type platform_type;
 int32 max_pages;
 int32 used_pages;
 int32 page_faults;
 int32 max_sems;
 int32 used_sems;
 int32 max_ports;
 int32 used_ports;
 int32 max_threads;
 int32 used_threads;
 int32 max_teams;
 int32 used_teams;
 char kernel_name[B_FILE_NAME_LENGTH];
 char kernel_build_date[B_OS_NAME_LENGTH];
 char kernel_build_time[B_OS_NAME_LENGTH];
 int64 kernel_version;
 } system_info

The system_info structure holds information about the machine and the state of the kernel. The structure's fields are:

• id. The 64−bit number (encoded as two int32s) that uniquely identifies this machine.

• boot_time. The time at which the computer was last booted, measured in microseconds since January 1st, 1970.

• cpu_count. The number of CPUs.

• cpu_type and cpu_revision. The type constant and revision number of the CPUs.

• cpu_infos . An array of cpu_info structures, one for each CPU.

• cpu_clock_speed. The speed (in Hz) at which the CPUs operate.

• bus_clock_speed. The speed (in Hz) at which the bus operates.

• platform_type. One of the platform type constants.

• max_resources and used_resources. The five pairs of max/used fields give the total number of RAM pages, semaphores, and so
on, that the system can create, and the number that are currently in use.

• page_faults. The number of times the system a read a page of memory into RAM due to a page fault.

• kernel_name. The (leaf) name of the kernel.

• kernel_build_date and kernel_build_time. Human−readable strings that tell you when the kernel was built.

• kernel_version. A number that identifies the kernel version.

40

OS.h
#Integer%20Types

The cpu_info structure is:

 typedef struct {
 bigtime_t active_time;
 } cpu_info;

• active_time is the number of microseconds spent doing useful work since the machine was booted.

Relatedly, B_MAX_CPU_COUNT is currently 8.

The machine_id type is:

 typedef int32 machine_id[2];

The cpu_type constants are:

 typedef enum {
 B_CPU_PPC_601 = 1,
 B_CPU_PPC_603 = 2,
 B_CPU_PPC_603e = 3,
 B_CPU_PPC_604 = 4,
 B_CPU_PPC_604e = 5,
 B_CPU_PPC_686 = 13,
 B_CPU_AMD_29K,
 B_CPU_X86,
 B_CPU_MC6502,
 B_CPU_Z80,
 B_CPU_ALPHA,
 B_CPU_MIPS,
 B_CPU_HPPA,
 B_CPU_M68K,
 B_CPU_ARM,
 B_CPU_SH,
 B_CPU_SPARC
 } cpu_type;

The platform_type constants are:

 typedef enum {
 B_BEBOX_PLATFORM = 0,
 B_MAC_PLATFORM,
 B_AT_CLONE_PLATFORM,
 B_ENIAC_PLATFORM,
 B_APPLE_II_PLATFORM,
 B_CRAY_PLATFORM,
 B_LISA_PLATFORM,
 B_TI_994A_PLATFORM,
 B_TIMEX_SINCLAIR_PLATFORM,
 B_ORAC_1_PLATFORM,
 B_HAL_PLATFORM
 } platform_type;

I haven't tried it, but I really don't think the BeOS would work at all well on a Timex Sinclair (see is_computer_on_fire()).

get_system_info() always returns B_OK.

 is_computer_on()

int32 is_computer_on(void)

Returns 1 if the computer is on. If the computer isn't on, the value returned by this function is undefined.

 is_computer_on_fire()

double is_computer_on_fire(void)

Returns the temperature of the motherboard if the computer is currently on fire. Smoldering doesn't count. If the computer isn't on fire, the function
returns some other value.

 Time Functions

 real_time_clock() , real_time_clock_usecs() , set_real_time_clock()

uint32 real_time_clock (void)

 System and Time Information

41

#B_OK

bigtime_t real_time_clock_usecs (void)

void set_real_time_clock (int32 secs_since_jan1_1970)

real_time_clock() returns the number of seconds that have elapsed since January 1, 1970.

real_time_clock_usecs() measures the same time span in microseconds.

set_real_time_clock() sets the value that the other two functions refer to.

 system_time()

bigtime_t system_time(void)

Returns the number of microseconds that have elapsed since the computer was booted.

 System and Time Information

42

 Thread and Team Concepts
A thread is a synchronous process that executes a series of program instructions. A team is a group of threads that make up a single program or
application.

Every application has at least one thread: When you launch an application, an initial threadthe main threadis automatically created (or spawned) and
told to run. The main thread executes the ubiquitous main() function, winds through the functions that are called from main(), and is automatically
deleted (or killed) when main() exits.

The Be operating system is multithreaded: from the main thread you can spawn and run additional threads; from each of these threads you can spawn
and run more threads, and so on. All the threads in all applications run concurrently and asynchronously with each other.

Threads are independent of each other. Most notably, a given thread doesn't own the other threads it has spawned. For example, if thread A spawns
thread B, and thread A dies (for whatever reason), thread B will continue to run. (But before you get carried away with the idea of leap−frogging
threads, you should take note of the caveat in "Death and the Main Thread".)

Threads and the POSIX fork() function are not compatible. You can't mix calls to spawn_thread() (the function that
creates a new thread) and fork() in the same application: If you call spawn_thread() and then try to call fork(), the
fork() call will fail. And vice versa.

Although threads are independent, they do fall into groups called teams. A team consists of a main thread and all other threads that "descend" from it
(that are spawned by the main thread directly, or by any thread that was spawned by the main thread, and so on). Viewed from a higher level, a team is
the group of threads that are created by a single application. You can't "transfer" threads from one team to another. The team is set when the thread is
spawned; it remains the same throughout the thread's life.

All the threads in a particular team share the same address space: Global variables that are declared by one thread will be visible to all other threads in
that team.

 Spawning a Thread

You spawn a thread by calling the spawn_thread() function. The function assigns and returns a system−wide thread_id number that you use
to identify the new thread in subsequent function calls. Valid thread_id numbers are positive integers; you can check the success of a spawn thus:

 thread_id my_thread = spawn_thread(...);

 if ((my_thread) < B_OK)
 /* failure */
 else
 /* success */

The arguments to spawn_thread(), which are examined throughout this description, supply information such as what the thread is supposed to do,
the urgency of its operation, and so on.

 Threads and App Images

A conceptual neighbor of spawning a thread is the act of loading an executable (or loading an app image). This is performed by calling the
load_image() function. Loading an image causes a separate program, identified as a file, to be launched by the system. For more information on
the load_image() function, see Images.

 Telling a Thread to Run

Spawning a thread isn't enough to make it run. To tell a thread to start running, you must pass its thread_id number to either the
resume_thread() or wait_for_thread() function:

• resume_thread() starts the new thread running and immediately returns. The new thread runs concurrently and asynchronously with
the thread in which resume_thread() was called.

• wait_for_thread() starts the thread running but doesn't return until the thread has finished. (You can also call
wait_for_thread() on a thread that's already running.)

Of these two functions, resume_thread() is the more common means for starting a thread that was created through spawn_thread().
wait_for_thread() is typically used to start the thread that was created through load_image().

 The Thread Function

When you call spawn_thread(), you must identify the new thread's thread function. This is a global C function (or a static C++ member function)
that the new thread will execute when it's told to run. The thread function, defined as thread_func, takes a single (void *) argument and returns
an int32 error code. When the thread function exits, the thread is automatically killed.

You pass a thread function as the first argument to spawn_thread(). For example, here we spawn a thread that uses a function called
lister() as its thread function. The last argument to spawn_thread() is forwarded to the thread function:

 int32 lister(void *data)
 {
 /* Cast the argument. */

43

#TempoChange(),SprayTempoChange()
#Integer%20Types

 BList *listObj = (BList *)data;
 ...
 }

 int32 main()
 {
 BList *listObj = new BList();
 thread_id my_thread;

 my_thread = spawn_thread(lister, ..., (void *)listObj);
 resume_thread(my_thread);
 ...
 }

See Passing Data to a Thread for other methods of passing data to a thread.

 Thread Names

A thread can be given a name which you assign through the second argument to spawn_thread(). The name can be 32 characters long (as
represented by the B_OS_NAME_LENGTH constant) and needn't be uniquemore than one thread can have the same name.

You can look for a thread based on its name by passing the name to the find_thread() function; the function returns the thread_id of the
so−named thread. If two or more threads bear the same name, the find_thread() function returns the first of these threads that it finds.

You can retrieve the thread_id of the calling thread by passing NULL to find_thread():

 thread_id this_thread = find_thread(NULL);

To retrieve a thread's name, you must look in the thread's thread_info structure. This structure is described in the
get_thread_info() function description.

Dissatisfied with a thread's name? Use the rename_thread() function to change it. Fool your friends.

 Thread Priorities

In a multi−threaded environment, the CPUs must divide their attention between the candidate threads, executing a few instructions from this thread,
then a few from that thread, and so on. But the division of attention isn't always equal: You can assign a higher or lower priority to a thread and so
declare it to be more or less important than other threads.

You assign a thread's priority (an integer) as the third argument to spawn_thread(). There are two categories of priorities: "time−sharing" and
"real−time."

• Time−sharing (values from 1 to 99). A time−sharing thread is executed only if there are no real−time threads in the ready queue. In the
absence of real−time threads, a time−sharing thread is elected to run once every "scheduler quantum" (currently, every three milliseconds).
The higher the time−sharing thread's priority value, the greater the chance that it will be the next thread to run.

• Real−time (100 and greater). A real−time thread is executed as soon as it's ready. If more than one real−time thread is ready at the same
time, the thread with the highest priority is executed first. The thread is allowed to run without being preempted (except by a real−time
thread with a higher priority) until it blocks, snoozes, is suspended, or otherwise gives up its plea for attention.

The Kernel Kit defines seven priority constants (see Thread Priority Values for the list). Although you can use other, "in−between" value as the
priority argument to spawn_thread(), it's suggested that you stick with these.

Furthermore, you can call the suggest_thread_priority() function to let the Kernel Kit determine a good priority for your thread. This
function takes information about the thread's scheduling and CPU needs, and returns a reasonable priority value to use when spawning the thread.

 Synchronizing Threads

There are times when you may want a particular thread to pause at a designated point until some other (known) thread finishes some task. Here are
three ways to effect this sort of synchronization:

• The most general means for synchronizing threads is to use a semaphore. The semaphore mechanism is described in great detail in

 Semaphores

.

• Synchronization is sometimes a side−effect of sending data between threads. This is explained in "Passing Data to a Thread", and in

 Ports

.

• Finally, you can tell a thread to wait for some other thread to die by calling wait_for_thread(), as described earlier.

 Thread and Team Concepts

44

 Controlling a Thread

There are four ways to control a thread while it's running:

• You can put the calling thread to sleep for some number of microseconds through the snooze() and snooze_until() functions.

• You can suspend the execution of any thread through the suspend_thread() function. The thread remains suspended until you
"unsuspend" it through a call to resume_thread() or wait_for_thread().

• You can send a POSIX "signal" to a thread through the send_signal() function. The SIGCONT signal tries to unblock a blocked or
sleeping thread without killing it; all other signals kill the thread. To override this behavior, you can install your own signal handlers.

• You can kill the calling thread through exit_thread() , or kill some other thread through kill_thread(). Feeling itchy? Try killing
an entire team of threads: The kill_team() function is more than a system call. It's therapy.

 Death and the Main Thread

As mentioned earlier, the control that's imposed upon a particular thread isn't visited upon the "children" that have been spawned from that thread.
However, the death of an application's main thread can affect the other threads:

When a main thread dies, the game is pretty much over. The main thread takes the team's heap, its statically
allocated objects, and other team−wide resourcessuch as access to standard IOwith it. This may seriously cripple any
threads that linger beyond the death of the main thread.

It's possible to create an application in which the main thread sets up one or more other threads, gets them running, and then dies. But such applications
should be rare. In general, you should try to keep your main thread around until all other threads in the team are dead.

 Passing Data to a Thread

Every thread has a message cache. You can write to a thread's message cache through the send_data() function. The thread can pick up your
message (a combination of an integer and a buffer) through receive_data(). The cache is only one message deep; if there's a message already in
the cache, send_data will block. Conversely, if there's no message in the cache, receive_data() will block.

You can also pass data to thread through a port. Arbitrarily deep, ports are more flexible than the message cache. See Ports for details.

 Thread and Team Concepts

45

 Threads and Teams
Declared in: be/kernel/OS.h unless otherwise noted

Library: libroot.so

A thread is a synchronous process that executes a series of program instructions. When you launch an application, an initial threadthe main threadis
automatically created (or spawned) and told to run. From the main thread you can spawn and run additional threads; from each of these threads you
can spawn and run more threads, and so on. The collection of threads that are spawned from the main threadin other words, the threads that comprise
an applicationis called a team. All the threads in all teams run concurrently and asynchronously with each other.

For more information on threads and teams, see "Thread and Team Concepts".

 Thread and Team Functions

 estimate_max_scheduling_latency()

Declared in: be/kernel/scheduler.h

bigtime_t estimate_max_scheduling_latency(thread_id thread = −1)

Returns the scheduling latency, in microseconds, of the specified thread. Specify a thread_id of −1 to return the scheduling latency of the current
thread.

 exit_thread() , kill_thread() , kill_team() , on_exit_thread()

void exit_thread(status_t return_value)

status_t kill_thread(thread_id thread)

status_t kill_team(team_id team)

status_t on_exit_thread(void (*callback)(void *), void *data)

These functions command one or more threads to halt execution:

• exit_thread() tells the calling thread to exit with a return value as given by the argument. Declaring the return value is only useful if
some other thread is sitting in a wait_for_thread() call on this thread. exit_thread() sends a signal to the thread (after caching
the return value in a known place).

• kill_thread() kills the thread given by the argument. The value that the thread will return to wait_for_thread() is undefined
and can't be relied upon. kill_thread() is the same as sending a SIGKILLTHR signal to the thread.

• kill_team() kills all the threads within the given team. Again, the threads' return values are random. kill_team() is the same as
sending a SIGKILL signal to any thread in the team. Each of the threads in the team is then handed a SIGKILLTHR signal.

• on_exit_thread() sets up the specified callback to be executed when the calling thread exits. The callback will receive the pointer
data as an input argument.

Exiting a thread is a fairly safe thing to dosince a thread can only exit itself, it's assumed that the thread knows what it's doing. Killing some other
thread or an entire team is a bit more drastic since the death certificate(s) will be delivered at an indeterminate time. In addition, killing a thread can
leak memory since resources that were allocated by the thread may not be freed. Killing an entire team, on the other hand, won't leak since the system
reclaims all resources when the team dies.

Keep in mind that threads die automatically (and their resources are reclaimed) if they're allowed to exit
naturally. You should only need to kill a thread if something has gone screwy.

RETURN CODES

• B_OK. The thread or team was successfully killed.

• B_BAD_THREAD_ID. Invalid thread value.

• B_BAD_TEAM_ID. Invalid team value.

46

OS.h unless otherwise noted
OS.h unless otherwise noted
scheduler.h
#B_OK
#B_BAD_THREAD_ID
#B_BAD_TEAM_ID

• B_NO_MEMORY. Returned by on_exit_thread() if there's no memory to construct the internal callback record.

 find_thread()

thread_id find_thread(const char *name)

Finds and returns the thread with the given name. A name argument of NULL returns the calling thread.

A thread's name is assigned when the thread is spawned. The name can be changed thereafter through the rename_thread() function. Keep in
mind that thread names needn't be unique: If two (or more) threads boast the same name, a find_thread() call on that name returns the first
so−named thread that it finds. There's no way to iterate through identically−named threads.

RETURN CODES

• B_NAME_NOT_FOUND. name doesn't identify a valid thread.

 get_team_info() , get_next_team_info()

status_t get_team_info(team_id team , team_info *info)

status_t get_next_team_info(int32 *cookie , team_info *info)

The functions copy, into the info argument, the team_info structure for a particular team. The get_team_info() function retrieves information
for the team identified by team. For information about the kernel, use B_SYSTEM_TEAM as the team argument.

The get_next_team_info() version lets you step through the list of all teams. The cookie argument is a placemark; you set it to 0 on your first
call, and let the function do the rest. The function returns B_BAD_VALUE when there are no more areas to visit:

 /* Get the team_info for every team. */
 team_info info;
 int32 cookie = 0;

 while (get_next_team_info(0, &cookie, &info) == B_OK)
 ...

See team_info for a description of that structure.

RETURN CODES

• B_OK. The desired team information was found.

• B_BAD_TEAM_ID. team doesn>t identify an existing team, or there are no more areas to visit.

 get_thread_info() , get_next_thread_info()

status_t get_thread_info(thread_id thread, thread_info *info)

status_t get_next_thread_info(team_id team,
 int32 *cookie,
 thread_info *info)

These functions copy, into the info argument, the thread_info structure for a particular thread:

The get_thread_info() function gets the information for the thread identified by thread.

The get_next_thread_info() function lets you step through the list of a team's threads through iterated calls. The team argument identifies the
team you want to look at; a team value of 0 means the team of the calling thread. The cookie argument is a placemark; you set it to 0 on your first
call, and let the function do the rest. The function returns B_BAD_VALUE when there are no more threads to visit:

 /* Get the thread_info for every thread in this team. */
 thread_info info;
 int32 cookie = 0;

 while (get_next_thread_info(0, &cookie, &info) == B_OK)
 ...

The value of the priority field describes the thread's "urgency"; the higher the value, the more urgent the thread. The more urgent the thread, the
more attention it gets from the CPU. Expected priority values fall between 0 and 120. See "Thread Priorities" for the full story.

 Threads and Teams

47

#B_NO_MEMORY
#B_NAME_NOT_FOUND
#B_BAD_VALUE
#B_OK
#B_BAD_TEAM_ID
#B_BAD_VALUE

Thread info is provided primarily as a debugging aid. None of the values that you find in a thread_info structure are
guaranteed to be validthe thread's state, for example, will almost certainly have changed by the time
get_thread_info() returns.

RETURN CODES

• B_OK. The thread was found; info contains valid information.

• B_BAD_VALUE. thread doesn't identify an existing thread, team doesn't identify an existing team, or there are no more threads to visit.

has_data() see send_data()

 rename_thread()

status_t rename_thread(thread_id thread, const char *name)

Changes the name of the given thread to name. The name can be no longer than B_OS_NAME_LENGTH (32 characters).

RETURN CODES

• B_OK. The thread was successfully named.

• B_BAD_THREAD_ID. thread argument isn't a valid thread_id number.

 resume_thread()

status_t resume_thread(thread_id thread)

Tells a new or suspended thread to begin executing instructions. If the thread has just been spawned, it enters and executes the thread function declared
in spawn_thread() . If the thread was previously suspended (through suspend_thread()), it continues from where it was suspended.

You can't use this function to wake up a sleeping thread, or to unblock a thread that's waiting to acquire a semaphore or waiting in
a receive_data() call. However, you can unblock any of these threads by suspending and then resuming. Blocked threads that are resumed
return B_INTERRUPTED.

resume_thread() is the same as sending a SIGCONT signal to the thread.

RETURN CODES

• B_OK. The thread was successfully resumed.

• B_BAD_THREAD_ID. thread argument isn't a valid thread_id number.

• B_BAD_THREAD_STATE. The thread isn't suspended.

 receive_data()

Retrieves a message from the thread's message cache. The message will have been placed there through a previous send_data() function call. If
the cache is empty, receive_data() blocks until one shows upit never returns empty−handed.

The thread_id of the thread that called send_data() is returned by reference in the sender argument. Note that there's no guarantee that the
sender will still be alive by the time you get its ID. Also, the value of sender going into the function is ignoredyou can't ask for a message from a
particular sender.

The send_data() function copies two pieces of data into a thread's message cache:

• A single four−byte code that's delivered as receive_data()'s return value,

• and an arbitrarily long data buffer that's copied into receive_data()'s buffer argument (you must allocate and free buffer yourself).
The buffer_size argument tells the function how many bytes of data to copy. If you don't need the data bufferif the code value returned
directly by the function is sufficientyou set buffer to NULL and buffer_size to 0.

Unfortunately, there's no way to tell how much data is in the cache before you call receive_data():

• If there's more data than buffer can accommodate, the unaccommodated portion is discardeda second receive_data() call will not
read the rest of the message.

 Threads and Teams

48

#B_OK
#B_BAD_VALUE
#B_OK
#B_BAD_THREAD_ID
#B_INTERRUPTED
#B_OK
#B_BAD_THREAD_ID
#B_BAD_THREAD_STATE

• Conversely, if receive_data() asks for more data than was sent, the function returns with the excess portion of
buffer unmodifiedreceive_data() doesn't wait for another send_data() call to provide more data with which to fill up the buffer.

Each receive_data() corresponds to exactly one send_data(). Lacking a previous invocation of its mate, receive_data() will block
until send_data() is called. If you don't want to block, you should call has_data() before calling receive_data() (and proceed to
receive_data() only if has_data() returns true).

RETURN CODES

• If successful, the function returns the message's four−byte code.

• B_INTERRUPTED. A blocked receive_data() call was interrupted by a signal.

 send_data() , receive_data() , has_data()

status_t send_data(thread_id thread,
 int32 code,
 void *buffer,
 size_t buffer_size)

int32 receive_data(thread_id *sender,
 void *buffer,
 size_t buffer_size)

bool has_data(thread_id thread)

Every thread has a one−message−deep message cache associated with it. These functions access that cache.

send_data() copies a message into thread's message cache. The target thread retrieves the message (and empties the cache) by calling
receive_data().

There are two parts to the message:

• A single four−byte code passed as an argument to send_data() and returned directly by retrieve_data().

• A buffer of data that's buffer_size bytes long (buffer can be NULL, in which case buffer_size should be 0). The data is copied into the
target thread's cache, and then copied into receive_data()'s buffer (which must be allocated). The calling threads retain responsibility
for freeing their buffers.

In addition to returning the code directly, and copying the message data into its buffer argument, receive_data() sets sender to the id of the
thread that sent the message.

send_data() blocks if there's an unread message in the target thread's cache; otherwise it returns immediately (i.e. it doesn't wait for the target to
call receive_data()). Analogously, receive_data() blocks until there's a message to retrieve.

In the following example, the main thread spawns a thread, sends it a message, and then tells the thread to run:

 main()
 {
 thread_id other_thread;
 int32 code = 63;
 char *buf = "Hello";

 other_thread = spawn_thread(thread_func, ...);
 send_data(other_thread, code, (void *)buf, strlen(buf));
 resume_thread(other_thread);
 ...
 }

To retrieve the message, the target thread calls receive_data():

 int32 thread_func(void *data)
 {
 thread_id sender;
 int32 code;
 char buf[512];

 code = receive_data(&sender, (void *)buf, sizeof(buf));
 ...
 }

Keep in mind that the message data is copied into the buffer; you must allocate adequate storage for the data. If the buffer isn't big enough to
accommodate all the datain the message, the left−over portion is thrown away. Note, however, that there isn't any way for a thread to determine how
much data has been copied into its message cache.

has_data() returns true if thread has a message in its message cache. Ostensibly, you use this function before calling send_data() or
receive_data() to avoid blocking:

 if (!has_data(target_thread))
 err = send_data(target_thread, ...);

 /* or */

 if (has_data(find_thread(NULL))

 Threads and Teams

49

#B_INTERRUPTED

 code = receive_data(...);

This works for receive_data() , but notice that there's a race condition between the has_data() and send_data() calls. Another thread
could send a message to the target in the interim.

RETURN CODES

send_data() returns:

• B_OK. The data was successfuly sent.

• B_BAD_THREAD_ID. thread doesn't identify a valid thread.

• B_NO_MEMORY. The target couldn't allocate enough memory for its copy of buffer.

• B_INTERRUPTED. The function blocked, but a signal unblocked it.

 set_thread_priority() , suggest_thread_priority()

status_t set_thread_priority(thread_id thread, int32 new_priority)

Declared in: be/kernel/scheduler.h

int32 suggest_thread_priority(uint32 what = B_DEFAULT_MEDIA_PRIORITY,
 int32 period = 0,
 bigtime_t jitter = 0,
 bigtime_t length = 0)

set_thread_priority() resets the given thread's priority to new_priority. The priority is expected to be between 0 and 120. See "Thread
Priorities" for a description of the priority scheme, and "Thread Priority Values" for a list of pre−defined priority constants.

suggest_thread_priority() takes information about a thread and returns a suggested priority that you can pass to
set_thread_priority() (or, more likely, to spawn_thread()).

The what value is a bit mask that indicates the type of activities the thread will be used for. The possible values are listed in Suggested Thread
Priorities.

period is the number of times per second the thread needs to be run (specify 0 if it needs to run continuously). jitter is an estimate, in microseconds, of
how much the period can vary as long as the average stays at period times per second.

length is an approximation of the amount of time, in microseconds, the thread will typically run per invocation (i.e., the amount of time that will pass
between the moment it receives a message, through processing it, until it's again waiting for another message).

For example, if you're spawning a thread to handle video refresh for a computer game, and you want the display to update 30 times per second, you
might use code similar to the following:

 int32 priority;
 priority = suggest_thread_priority(B_LIVE_3D_RENDERING, 30, 1000, 150);
 th = spawn_thread(func, "render_thread", priority, NULL)

This spawns the rendering thread with a priority appropriate for a thread for live 3D rendering which wants to be run 30 times per second, with a
variation of only 1000 microseconds. Each invocation of the thread's code is estimated to take 150 microseconds. Obviously the jitter and
length values would have to be tuned to the particular application.

RETURN CODES

set_thread_priority() returns...

• Positive integers. If the function is successful, the previous priority is returned.

• B_BAD_THREAD_ID. thread doesn't identify a valid thread.

 snooze() , snooze_until()

status_t snooze(bigtime_t microseconds)

status_t snooze_until(bigtime_t microseconds, int timebase)

snooze() blocks the calling thread for the given number of microseconds.

snooze_until() blocks until an absolute time measured in the given timebase. Currently, the only allowed value for timebase is

 Threads and Teams

50

#B_OK
#B_BAD_THREAD_ID
#B_NO_MEMORY
#B_INTERRUPTED
scheduler.h
#B_BAD_THREAD_ID

B_SYSTEM_TIMEBASE, which measures time against the system clock (as reported by system_time()).

RETURN CODES

• B_OK. The thread went to sleep and is now awake.

• B_INTERRUPTED. The thread received a signal while it was sleeping.

snooze_until() see snooze()

 spawn_thread()

thread_id spawn_thread(thread_func func,
 const char *name,
 int32 priority,
 void *data)

Creates a new thread and returns its thread_id identifier (a positive integer). The arguments are:

• func is a pointer to a thread function. This is the function that the thread will execute when it's told to run. See "The Thread Function" for
details.

• name is the name that you wish to give the thread. It can be, at most, B_OS_NAME_LENGTH (32) characters long.

• priority is the CPU priority level of the thread. This value should be between 0 and 120; he higher the priority, the more attention the thread
gets. See

 Threads and Teams

51

#B_OK
#B_INTERRUPTED

 Thread Priorities
for adescription of the priorities, and

52

 Thread Priority Values
for a list of priority constants.

• data is forwarded as the argument to the thread function.

A newly spawned thread is in a suspended state (B_THREAD_SUSPENDED). To tell the thread to run, you pass its thread_id to the
resume_thread() function. The thread will continue to run until the thread function exits, or until the thread is explicitly killed (through a signal
or a call to exit_thread() , kill_thread() , or kill_team()).

RETURN CODES

• B_NO_MORE_THREADS. all thread_id numbers are currently in use.

• B_NO_MEMORY. Not enough memory to allocate the resources for another thread.

suggest_thread_priority() see set_thread_priority()

 suspend_thread()

status_t suspend_thread(thread_id thread)

Halts the execution of the given thread, but doesn't kill the thread entirely. The thread remains suspended (suspend_thread() blocks) until it's
told to run through the resume_thread() function. Nothing prevents you from suspending your own thread, i.e.:

 suspend_thread(find_thread(NULL));

Of course, this is only smart if you have some other thread that will resume you later.

You can suspend any thread, regardless of its current state. But be careful: If the thread is blocked on a semaphore (for example), the subsequent
resume_thread() call will "hop over" the semaphore acquisition.

Suspensions don't nest. A single resume_thread() unsuspends a thread regardless of the number of suspend_thread() calls it has received.

suspend_thread() is the same as sending a SIGSTOP signal to the thread.

RETURN CODES

• B_OK. The thread is now suspended.

• B_BAD_THREAD_ID. thread isn't a valid thread_id number.

 wait_for_thread()

status_t wait_for_thread(thread_id thread, status_t *exit_value)

This function causes the calling thread to wait until thread (the "target thread") has died. If thread is suspended (or freshly spawned),
wait_for_thread() will resume it.

When the target thread is dead, the value that was returned by its thread function (or imposed by exit_thread()) is returned in exit_value. If the
target thread was killed (by kill_thread() or kill_team()), or if the thread function doesn't return a value, the value returned in
exit_value will be unreliable.

You must pass a valid pointer as the second argument to wait_for_thread(). You mustn't pass NULL even if you're
not interested in the return value.

RETURN CODES

• B_OK. The target is now dead.

• B_BAD_THREAD_ID. thread isn't a valid thread_id number.

• B_INTERRUPTED. The target was killed by a signal. This includes kill_thread() , kill_team() , and exit_thread().

53

#B_NO_MORE_THREADS
#B_NO_MEMORY
#B_OK
#B_BAD_THREAD_ID
#B_OK
#B_BAD_THREAD_ID
#B_INTERRUPTED

 Thread and Team Structures and Types

 team_id , thread_id

typedef int32 team_id ;

typedef int32 thread_id ;

These id numbers uniquely identify teams and threads, respecitvely.

 team_info

typedef struct {
 team_id team;
 int32 thread_count;
 int32 image_count;
 int32 area_count;

thread_id debugger_nub_thread;
port_id debugger_nub_port;

 int32 argc;
 char args[64];
 uid_t uid;
 gid_t gid;
 } team_info;

The team_info structure returns information about a team. To retrieve one of these structures, use get_team_info() or
get_next_team_info().

The first field is obvious; the next three reasonably so: They give the number of threads that have been spawned, images that have been loaded, and
areas that have been created or cloned within this team.

The debugger fields are used by the, uhm, the...debugger?

The argc field is the number of command line arguments that were used to launch the team; args is a copy of the first 64 characters from the
command line invocation. If this team is an application that was launched through the user interface (by double−clicking, or by accepting a dropped
icon), then argc is 1 and args is the name of the application's executable file.

uid and gid identify the user and group that "owns" the team. You can use these values to play permission games.

 thread_func

typedef int32 (*thread_func)(void *data);

thread_func is the prototype for a thread's thread function. You specify a thread function by passing a thread_func as the first argument to
spawn_thread(); the last argument to spawn_thread() is forwarded as the thread function's data argument. When the thread function exits,
the spawned thread is automatically killed. To retrieve a thread_func's return value, some other thread must be waiting in a
wait_for_thread() call.

Note that spawn_thread() doesn't copy the data that data points to. It simply passes the pointer through literally. Never pass a pointer that's
allocated locally (on the stack).

 thread_info

typedef struct {
thread_id thread;
team_id team;

 char name[B_OS_NAME_LENGTH];
thread_state state;
sem_id sem;

 int32 priority;
bigtime_t user_time;
bigtime_t kernel_time;

 void *stack_base;
 void *stack_end;
 } thread_info

The thread_info structure contains information about a thread. To retrieve one of these structure, use get_thread_info() or

 Thread Priority Values

54

#bigtime_t
#bigtime_t

get_next_thread_info().

The thread , team, and name fields contain the indicated information.

state describes what the thread is currently doing (see thread_state for the list of states). If the thread is waiting to acquire a semaphore, sem is
that semaphore.

priority is a value that indicates the level of attention the thread gets (see Thread Priority).

user_time and kernel_time are the amounts of time, in microseconds, the thread has spent executing user code and the amount of time the
kernel has run on the thread's behalf, respectively.

stack_base and stack_end are pointers to the first byte and last bytes in the thread's execution stack. Currently, the stack size is fixed at around
256k.

The two stack pointers are currently inverted such that stack_base is less than stack_end. (In a stack−grows−down
world, the base should be greater than the end.)

 Thread and Team Constants

 B_SYSTEM_TEAM

#define B_SYSTEM_TEAM ...

Use this constant as the first argument to get_team_info() to get team information about the kernel).

 B_SYSTEM_TIMEBASE

#define B_SYSTEM_TIMEBASE ...

The system timebase constant is used as a basis for time measurement in the snooze_until() function. (Currently, it's the only timebase
available.)

 be_task_flags

Declared in: be/kernel/scheduler.h

enum be_task_flags { B_DEFAULT_MEDIA_PRIORITY,
B_OFFLINE_PROCESSING,
B_STATUS_RENDERING,
B_USER_INPUT_HANDLING

B_LIVE_VIDEO_MANIPULATION
 };

 B_DEFAULT_MEDIA_PRIORITY The thread isn't doing anything specialized.

 B_OFFLINE_PROCESSING The thread is doing non−real−time computations.

 B_STATUS_RENDERING The thread is rendering a status or preview display.

 B_USER_INPUT_HANDLING The thread is handling user input.

 B_LIVE_VIDEO_MANIPULATIO N The thread is processing live video (filtering, compression, decompression, etc.).

 B_VIDEO_PLAYBACK The thread is playing back video from a hardware device.

 Thread Priority Values

55

#team
scheduler.h

 B_VIDEO_RECORDING The thread is recording video from a hardware device.

 B_LIVE_AUDIO_MANIPULATIO N The thread is doing real−time manipulation of live audio data (filtering, compression, decompression,
etc.).

 B_AUDIO_PLAYBACK The thread is playing back audio from a hardware device.

 B_AUDIO_RECORDING The thread is recording audio from a hardware device.

 B_LIVE_3D_RENDERING The thread is performing live 3D rendering.

 B_NUMBER_CRUNCHING The thread is doing data processing.

These constants describe what the thread is designed to do. You use these constants when asking for a suggested priority (see
suggest_thread_priority()).

These constants may not be used as actual thread priority valuesdo not pass one of these values as the priority argument
to spawn_thread().

 Thread Priority Values

 B_LOW_PRIORITY 5

 B_NORMAL_PRIORITY 10

 B_DISPLAY_PRIORITY 15

 B_URGENT_DISPLAY_PRIORIT Y 20

 B_REAL_TIME_DISPLAY_PRIORITY 100

 B_URGENT_PRIORITY 110

 B_REAL_TIME_PRIORITY 120

The thread priority values are used to set the "urgency" of a thread. Although you can reset a thread's priority through set_thread_priority(),
the priority is initiallyand almost always permanentlyset in spawn_thread(). As shown here, there are two types of

 thread_state

enum { ... } thread_state

 B_THREAD_RUNNING The thread is currently receiving attention from a CPU.

 B_THREAD_READY The thread is waiting for its turn to receive attention.

 B_THREAD_SUSPENDED The thread has been suspended or is freshly−spawned and is waiting to start.

 B_THREAD_WAITING The thread is waiting to acquire a semaphore. The sem field of the thread's thread_info structure will tell you
which semaphore.

 B_THREAD_RECEIVING The thread is sitting in a receive_data() function call.

 Thread Priority Values

56

 B_THREAD_ASLEEP The thread is sitting in a snooze() call.

A thread's state tells you what the thread is currently doing. To get the state, look in the state field of the thread_info structure (retrieved
through get_thread_info()).

 Thread Priority Values

57

 Time Information
Declared in: be/kernel/OS.h

Library: libroot.so

The following functions set and get the system clock.

 Time Functions

 real_time_clock() , real_time_clock_usecs() , set_real_time_clock()

uint32 real_time_clock (void)

bigtime_t real_time_clock_usecs (void)

void set_real_time_clock (int32 secs_since_jan1_1970)

real_time_clock() returns the number of seconds that have elapsed since January 1, 1970.

real_time_clock_usecs() measures the same time span in microseconds.

set_real_time_clock() sets the value that the other two functions refer to.

 system_time()

bigtime_t system_time(void)

Returns the number of microseconds that have elapsed since the computer was booted.

58

OS.h

 Miscellaneous Functions and Constants
Declared in: be/kernel/OS.h (unless otherwise noted)

 Functions

 clear_caches()

Declared in: be/kernel/image.h

void clear_caches(void *addr, size_t len, uint32 flags)

This function clears or invalidates the instruction and data caches. You should only need this function if you're generating code on the fly, or if you're
performing a timing loop and you want to start with fresh caches (to get a "worst case" estimate).

The argument are:

• addr is the starting address of a section of memory that corresponds to a section of one of the caches.

• len is the length, in bytes, of the instruction or data segment that you want to clear or invalidate.

• flags is one or both of B_INVALIDATE_ICACHE and B_FLUSH_DCACHE.

By invalidating a section of the instruction cache, you cause the instructions in that section to be reloaded next time they're needed. Flushing the data
cache causes the in−memory copy of the data to be written out to the cache.

 debugger()

void debugger(const char *string)

Throws the calling thread into the debugger. The string argument becomes the debugger's first utterance.

 disable_debugger()

int disable_debugger(int state)

Instructs the kernel to send a signal for all exceptions, even those that don't normally trigger the debugger. If the application doesn't have a handler
installed for the exception, the team dies without triggering the debugger. state should be nonzero to turn on this functionality or 0 to turn it off.

 set_alarm()

bigtime_t set_alarm(bigtime_t time, uint32 mode)

Tells the kernel to send the SIGALRM signal at some point in the future, as defined by the arguments:

• If mode is B_PERIODIC_ALARM, the signal is sent every time microseconds, starting as soon as set_alarm() function returns.

• If mode is B_ONE_SHOT_ABOLUTE_ALARM, the signal is sent once (only) after time microseconds have elapsed measured from the time
the system was booted. If that point has already passed, the signal is sent immediately.

• If mode is B_ONE_SHOT_RELATIVE_ALARM, the signal is sent once (only) after time microseconds have elapsed from the time
set_alarm() returns.

When the signal is sent, the SIGALRM handler is called (you set the handler through the normal means, by calling the Posix signal() function). The
handler runs in the thread that set the alarm.

From within the SIGALRM handler, you mustn't call anything that would cause the kernel scheduler to run. Just about the
only safe call you can make from your signal handler is release_sem().

59

OS.h (unless otherwise noted)
OS.h (unless otherwise noted)
image.h

The most recent alarm requested cancels any previous request. For example, in this sequence...

 /* Ask for an alarm ten seconds from now. */
 set_alarm(10e6, B_ONE_SHOT_RELATIVE_ALARM);
 /* Ask for an alarm one second from now. */
 set_alarm(10e5, B_ONE_SHOT_RELATIVE_ALARM);

...only the second alarm request will be fulfilledthe first requested is cancelled when the second set_alarm() call is made. This applies to all alarm
types; for example, a one−shot alarm request will cancel an active periodic alarm.

To explicitly cancel the previous alarm request without installing a new alarm, do this:

 set_alarm(B_INFINITE_TIMEOUT, B_PERIODIC_ALARM);

This cancels the previous alarm request regardless of the type of alarm.

 set_signal_stack()

Declared in: posix/signal.be.h

void set_signal_stack(void *ptr, size_t size)

Sets the location and size of the stack that's used by the thread's signal handlers.

 Constants

 B_INFINITE_TIMEOUT

B_INFINITE_TIMEOUT

The inifinite timeout value can be used to specify, to timeout−accepting functions, that you're willing to wait forever.

 B_OS_NAME_LENGTH

B_OS_NAME_LENGTH

This constant gives the maximum length of the name of a thread, semaphore, port, area, or other operating system bauble.

 B_PAGE_SIZE

B_PAGE_SIZE

The B_PAGE_SIZE constant gives the size, in bytes, of a page of RAM.

 Miscellaneous Functions and Constants

60

signal.be.h

The Kernel Kit: Master Index

A

acquire_sem() Semaphores

acquire_sem_etc() Semaphores

B_ADD_ON_IMAGE Images

B_APP_IMAGE Images

Area Examples Area Examples

Area Examples Area Examples

Area Functions Areas

Area IDs and Area Names Areas Concepts

Area Info Areas Concepts

area_for() Areas

area_info Areas

Areas Areas

Areas Areas

Areas Concepts Areas Concepts

Areas Concepts Areas Concepts

B_AUDIO_PLAYBACK Threads and Teams

B_AUDIO_RECORDING Threads and Teams

B

C

B_CHECK_PERMISSION Semaphores

clear_caches() Miscellaneous Functions and Constants

clone_area() Areas

Cloned Memory Areas Concepts

close_port() Ports

Constants Miscellaneous Functions and Constants

Controlling a Thread Thread and Team Concepts

61

cpu_info System and Time Information

cpu_info System Information

cpu_type System and Time Information

cpu_type System Information

B_CPU_X86_VENDOR_MASK System Information

create_area() Areas

create_port() Ports

create_sem() Semaphores

Creating a Shared Library Image Concepts

Creating and Destroying a Port Port Concepts

Creating and Using an Add−on Image Image Concepts

D

debugger() Miscellaneous Functions and Constants

B_DEFAULT_MEDIA_PRIORITY Threads and Teams

delete_area() Areas

delete_port() Ports

delete_sem() Semaphores

Deleting a Semaphore Semaphore Concepts

Deleting an Area Areas Concepts

disable_debugger() Miscellaneous Functions and Constants

B_DISPLAY_PRIORITY Threads and Teams

B_DO_NOT_RESCHEDULE Semaphores

E

Example 1: Creating and Writing into an Area Area Examples

Example 2: Reading a File into an Area Area Examples

Example 3: Accessing a Designated Area Area Examples

Example 4: Cloning and Sharing an Area Area Examples

Example 5: Cloning Addresses Area Examples

exit_thread() Threads and Teams

The Kernel Kit: Master Index

62

Exporting Add−on Symbols Image Concepts

Exporting and Importing Symbols Image Concepts

F

find_port() Ports

find_thread() Threads and Teams

Functions Miscellaneous Functions and Constants

G

get_image_info() Images

get_image_symbol() Images

get_next_area_info() Areas

get_next_image_info() Images

get_next_port_info() Ports

get_next_sem_info() Semaphores

get_next_team_info() Threads and Teams

get_next_thread_info() Threads and Teams

get_nth_image_symbol() Images

get_port_info() Ports

get_sem_count() Semaphores

get_sem_info() Semaphores

get_system_info() System and Time Information

get_system_info() System Information

get_team_info() Threads and Teams

get_thread_info() Threads and Teams

H

I

Image Concepts Image Concepts

Image Functions Images

The Kernel Kit: Master Index

63

image_info Images

image_type Images

Images Images

Images Images

B_INFINITE_TIMEOUT Miscellaneous Functions and Constants

Inter−application Semaphores Semaphore Concepts

is_computer_on() System and Time Information

is_computer_on() System Information

is_computer_on_fire() System and Time Information

is_computer_on_fire() System Information

K

The Kernel Kit The Kernel Kit

kill_team() Threads and Teams

kill_thread() Threads and Teams

L

B_LIVE_3D_RENDERING Threads and Teams

B_LIVE_AUDIO_MANIPULATIO Threads and Teams

B_LIVE_VIDEO_MANIPULATIO Threads and Teams

load_add_on() Images

load_image() Images

Loading an Add−on Image Image Concepts

Loading an App Image Image Concepts

Locking an Area Areas Concepts

B_LOW_PRIORITY Threads and Teams

M

B_MAX_CPU_COUNT System Information

The Message Queue: Reading and Writing Port MessagesPort Concepts

Miscellaneous Functions and Constants Miscellaneous Functions and Constants

The Kernel Kit: Master Index

64

#image_type

Miscellaneous Functions and Constants Miscellaneous Functions and Constants

N

B_NUMBER_CRUNCHING Threads and Teams

O

on_exit_thread() Threads and Teams

B_OS_NAME_LENGTH Miscellaneous Functions and Constants

P

Passing Data to a Thread Thread and Team Concepts

platform_type System and Time Information

platform_type System Information

Port Concepts Port Concepts

Port Concepts Port Concepts

Port Functions Ports

Port Messages Port Concepts

Port Structures and Constants Ports

port_buffer_size() Ports

port_buffer_size_etc() Ports

port_count() Ports

port_info Ports

Ports Ports

Ports Ports

Ports Thread and Team Concepts

R

read_port_etc() Ports

real_time_clock() System and Time Information

real_time_clock() Time Information

real_time_clock_usecs() System and Time Information

The Kernel Kit: Master Index

65

real_time_clock_usecs() Time Information

B_REAL_TIME_DISPLAY_PRIORITY Threads and Teams

B_REAL_TIME_PRIORITY Threads and Teams

receive_data() Threads and Teams

B_RELATIVE_TIMEOUT Semaphores

release_sem() Semaphores

release_sem_etc() Semaphores

rename_thread() Threads and Teams

resize_area() Areas

resume_thread() Threads and Teams

S

sem_info Semaphores

Semaphore Concepts Semaphore Concepts

Semaphore Concepts Semaphore Concepts

Semaphore Constants Semaphores

Semaphore Control Flags Semaphores

Semaphore Example 1: Locking Semaphore Examples

Semaphore Example 2: Benaphores Semaphore Examples

Semaphore Example 3: Imposing an Execution OrderSemaphore Examples

Semaphore Examples Semaphore Examples

Semaphore Examples Semaphore Examples

Semaphore Functions Semaphores

Semaphore Structures and Types Semaphores

Semaphores Semaphores

Semaphores Semaphores

Semaphores Thread and Team Concepts

send_data() Threads and Teams

set_alarm() Miscellaneous Functions and Constants

set_area_protection() Areas

The Kernel Kit: Master Index

66

set_port_owner() Ports

set_real_time_clock() System and Time Information

set_real_time_clock() Time Information

set_sem_owner() Semaphores

set_signal_stack() Miscellaneous Functions and Constants

set_thread_priority() Threads and Teams

Sharing an Area Between Applications Areas Concepts

snooze() Threads and Teams

snooze_until() Threads and Teams

spawn_thread() Threads and Teams

Spawning a Thread Thread and Team Concepts

B_STATUS_RENDERING Threads and Teams

suggest_thread_priority() Threads and Teams

suspend_thread() Threads and Teams

Symbols Image Concepts

Synchronizing Threads Thread and Team Concepts

System and Time Information System and Time Information

System and Time Information System and Time Information

System Info Functions and Structures System and Time Information

System Info Functions System Information

System Info Structures and Constants System Information

System Information System Information

System Information System Information

system_info System and Time Information

system_info System Information

B_SYSTEM_TEAM Threads and Teams

system_time() System and Time Information

system_time() Time Information

B_SYSTEM_TIMEBASE Threads and Teams

The Kernel Kit: Master Index

67

T

team_id Threads and Teams

team_info Threads and Teams

Telling a Thread to Run Thread and Team Concepts

Thread and Team Concepts Thread and Team Concepts

Thread and Team Concepts Thread and Team Concepts

Thread and Team Constants Threads and Teams

Thread and Team Functions Threads and Teams

Thread and Team Structures and TypesThreads and Teams

The Thread Count Semaphore Concepts

The Thread Function Thread and Team Concepts

Thread Names Thread and Team Concepts

Thread Priorities Thread and Team Concepts

Thread Priorities Threads and Teams

Thread Priority Values Threads and Teams

The Thread Queue Semaphore Concepts

B_THREAD_ASLEEP Threads and Teams

thread_func Threads and Teams

thread_id Threads and Teams

thread_info Threads and Teams

B_THREAD_READY Threads and Teams

B_THREAD_RECEIVING Threads and Teams

B_THREAD_RUNNING Threads and Teams

thread_state Threads and Teams

B_THREAD_SUSPENDED Threads and Teams

B_THREAD_WAITING Threads and Teams

Threads and App Images Thread and Team Concepts

Threads and Teams Threads and Teams

Threads and Teams Threads and Teams

Time Functions System and Time Information

The Kernel Kit: Master Index

68

Time Functions Time Information

Time Information Time Information

Time Information Time Information

U

B_URGENT_DISPLAY_PRIORIT Threads and Teams

B_URGENT_PRIORITY Threads and Teams

B_USER_INPUT_HANDLING Threads and Teams

V

B_VIDEO_RECORDING Threads and Teams

W

write_port() Ports

write_port_etc() Ports

The Kernel Kit: Master Index

69

	The Device Kit - Table of Contents
	 The Kernel Kit
	 Areas Concepts
	 Areas
	 Area Examples
	 Image Concepts
	 Images
	 Port Concepts
	 Ports
	 Semaphores
	 Semaphore Concepts
	 Semaphore Examples
	 System Information
	 System and Time Information
	 Thread and Team Concepts
	 Threads and Teams
	 Thread Priorities
	 Thread Priority Values
	 Time Information
	 Miscellaneous Functions and Constants
	The Kernel Kit: Master Index

