
 The Game Kit

The Device Kit − Table of Contents

 The Game Kit ...1

 BDirectWindow ...2

 BFileGameSound ...10

 BGameSound ...13

 BPushGameSound ...19

 BSimpleGameSound ...22

 BStreamingGameSound ...24

 BWindowScreen ..27

 Global Functions, Constants, and Defined Types ..34

The Game Kit: Master Index..38

i

 The Game Kit
The Game Kit provides features that game developers will find particularly useful:

There are two types of functionality provided by the Game Kit:

• Low−level graphics access

• High−performance and convenient sound playback

There's also one global function, set_mouse_position(), which lets you move the mouse cursor programatically.

Although designed with games in mind, nothing in the Game Kit is restricted to game applications, except that the user will have to deposit another 50
cents every three minutes.

 Low−Level Graphics Access
There are two classes provided for direct access to the underlying graphics hardware: BWindowScreen and BDirectWindow. These two classes both
give you direct access to the graphics card's frame buffer; the difference between them is that BWindowScreen always takes over the entire screen,
bypassing the Application Server, while BDirectWindow can draw in a window on most graphics hardware.

Although BDirectWindow can do everything BWindowScreen can do, BWindowScreen can be a little easier to use.

 High−Performance Audio
Several classes are provided for high−performance audio playback:

• BGameSound

• BFileGameSound

• BSimpleGameSound

• BStreamingGameSound

• BPushGameSound

BGameSound is a base class and isn't used directly; it's the foundation for all the other audio classes in the Game Kit.

BFileGameSound is used to represent a sound effect stored in a disk file, and provides functions for playing the sound. It can be used for playing music
loops from audio files, or for playing the occasional large sound effect. BSimpleGameSound, on the other hand, preloads the sound into memory, so
that it can be played back with extremely low latency and low overhead (at the expense of memory space).

BPushGameSound are used to let you fill buffers flowing to the speakers (or headphones, or whatever audio output device is being used). Their
missions are the same, but their methods are different; BPushGameSound also provides a way to play sound in a cyclic loop, keeping ahead of the
playback point in the buffer. This is the extreme in high−performance, low−latency audio, but does require some extra work on the programmer's part.

BStreamingGameSound requires magic powers to use; its functionality is closely tied to the implementation of the Kit, especially when hardware
sound acceleration is involved. So don't touch it, we beg you.

1

 BDirectWindow
Derived from: BWindow

Declared in: be/kit/game/DirectWindow.h

Library: libgame.so

Summary

The BDirectWindow class gives your code direct access to the graphics frame buffer on the video card. Unlike BWindowScreen, BDirectWindow can
be used in both full−screen and window modesyou can create a BDirectWindow that looks just like a normal window, but lets your code draw into it
by directly accessing the frame buffer.

In addition, BDirectWindow lets you switch between full−screen exclusive mode and windowed modes without breaking down and rebuilding the
object. A simple call to the SetFullScreen() function does the job.

If you want your direct window to be full−screen but don't want exclusive mode, just resize the window to fill the entire
screen; since full−screen exclusive mode (as set by calling SetFullScreen()) won't let other windows draw in front of
your direct window, you can't have menus in a full−screen exclusive mode direct window.

Another difference between BDirectWindow and BWindowScreen is that BDirectWindow lets you access all the BWindow functions; you can literally
treat your BDirectWindow just like another window. There are two caveats:

Don't draw into the direct window from its own thread; you should spawn another thread for drawing into the direct
window, and use the DirectConnected() function to synchronize the interaction between BDirectWindow and your
drawing thread. Also, if you choose to use BWindow or BView API inside a BDirectWindow, be sure you don't block the
DirectConnected() function.

Not all video cards support window mode; use the SupportsWindowMode() function if you need to know whether or not window mode is
available.

 Getting Connected (and Staying That Way)

The key to the BDirectWindow class is the DirectConnected() function, which your code must implement. This function is called whenever a
change that your drawing code may need to be aware of occurs.

When your DirectConnected() function is called, it's passed a pointer to a direct_buffer_info structure, as follows:

 typedef struct {
 direct_buffer_state buffer_state;
 direct_driver_state driver_state;
 void *bits;
 void *pci_bits;
 int32 bytes_per_row;
 uint32 bits_per_pixel;
 color_space pixel_format;
 buffer_layout layout;
 buffer_orientation orientation;
 uint32 _reserved[9];
 uint32 _dd_type_;
 uint32 _dd_token_;
 uint32 clip_list_count;
 clipping_rect window_bounds;
 clipping_rect clip_bounds;
 clipping_rect clip_list[1];
 } direct_buffer_info;

 buffer_state indicates what change is occurring in the direct buffer access privileges. It can have one of the following values:

B_DIRECT_START Your BDirectWindow has just received direct screen access to the part of the screen described by the
direct_buffer_info structure.

B_DIRECT_STOP Your direct screen access privileges have been suspended. None of the other fields in the
direct_buffer_info structure are valid.

B_DIRECT_MODIFY A change has occurred to the direct screen access buffer; your drawing code needs to take whatever action is necessary to
adjust to the new state.

You will always receive a B_DIRECT_START notification when your BDirectWindow is first connected to the screen, followed by any number of
B_DIRECT_MODIFY notifications (it's possible you won't receive any at all). When you return from DirectConnected() after handling
B_DIRECT_START or B_DIRECT_MODIFY, your application guarantees to the application server that your code will abide by the frame buffer

2

#BWindow
DirectWindow.h
DirectWindow.summary.html
#BWindow
#BWindow
#BView

configuration specified by the direct_buffer_info structure until another B_DIRECT_MODIFY notification is received (or
B_DIRECT_STOP occurs).

You'll receive a B_DIRECT_STOP notification when the window is closed, hidden, or if moved, or if a resolution or color depth change occurs. Once
your DirectConnected() function returns from handling this notification, you guarantee to the application server that your code won't touch the
frame buffer anymore.

For any of these notifications, your DirectConnected() function shouldn't return until you can guarantee to the application server that your code
will abide by the frame buffer configuration it received.

You can get further information about what changed by testing against other flags in the buffer_state field:

B_BUFFER_MOVED The content of your window has been moved, either by a call to MoveTo() or MoveBy() or by the user manually
dragging the window. The contents of the window are always moved relative to the top−left corner of the window.

B_BUFFER_RESET The entire direct access buffer has been reset. This can happen if the user changes the depth or resolution of the
screen, or if the window had previously been hidden and has been made visible again.

B_BUFFER_RESIZED The content area of your window has been resized.

B_CLIPPING_MODIFIED
The visible region of the content area of your window changed. This doesn't imply anything about the position of
the window or the size of the content area of the windowit simply means that the part of the window that's visible
has changed shape.

The driver_state field indicates changes in the state of the graphics card on which your direct window is displayed. There are two possible
values:

B_MODE_CHANGED The resolution or depth of the graphics card has changed.

B_DRIVER_CHANGED The window was moved onto another monitor.

The bits field is a pointer to the frame buffer in your own team's memory space.

The pci_bits field is a pointer to the frame buffer in the PCI memory space; this value is typically needed to control DMA.

 bytes_per_row is the number of bytes used to represent a single row of pixels in the frame buffer.

 bits_per_pixel is the number of bits actually used to store a single pixel, including reserved, unused, or alpha channel bits. This value is usually
a multiple of eight.

 pixel_format is the format used to encode a pixel, as defined in the color_space type in <GraphicsDefs.h>.

The layout , orientation , _reserved , _dd_type_ , and _dd_token_ fields are all reserved for future use and must not be used.

 window_bounds is a rectangle that defines the full content area of the window, in screen coordinates. You can convert these coordinates into frame
buffer addresses using the values in the bits , bytes_per_row , and bits_per_pixel fields. The clipping_rect structure is:

 typedef struct {
 int32 left;
 int32 top;
 int32 right;
 int32 bottom;
 } clipping_rect;

Note that, as always, these edges are inclusive; for example, if left is 5 and top is 3, the pixel at (5,3) is included in the rectangle's contents.

 clip_bounds is the bounding rectangle of the visible part of the content area of the window, in screen coordinates. This rectangle is the smallest
rectangle that contains all the rectangles in the clip_list , described below.

 clip_list_count is the number of rectangles in the clip_list . The clip_list is a list of rectangles that together define the visible
region of the content area of the window, in screen coordinates

The data in the direct_buffer_info structure is only valid until DirectConnected() returns, so if you need to reference any of the
information later, you should make a copy of the fields you need.

If your DirectConnected() implementation doesn't handle a request within three seconds, the Application Server will
intentionally crash your application under the assumption that it's deadlocked. Be sure to handle requests as quickly as
possible.

 BDirectWindow

3

#MoveTo()
#MoveBy()
#color_space

 Window Mode vs. Full Screen Mode

There are some differences in how BDirectWindow behaves depending on whether it's in window mode or full−screen exclusive mode.

In window mode, the BDirectWindow behaves almost exactly like a BWindowso much so that you can use a BDirectWindow in any situation you'd
normally use a BWindow. The window_bounds rectangles are the same size and shape as the window itself, as you'd expect. If exclusive window
mode is available (SupportsWindowMode() returns true), DirectConnected() will be called as described above, thereby providing the
means to directly access the frame buffer. If the graphics card doesn't support exclusive access to the frame buffer while in window mode,
DirectConnected() will never be called, and you can only use BWindow and BView APIs to work in the window.

In full−screen exclusive mode, the window_bounds are actually the size and shape of the entire screen, even if the screen isn't the same size as the
direct window you created. You have to handle the difference yourself.

Full−screen exclusive mode also guarantees that your window will always be the focus, always be in front, and will always stay full−screen (the
application server will resize the window for you if the screen resolution changes). Since no other windows can come in front of a full−screen
exclusive direct window, any Interface Kit objects that use a window to display their contents won't work; this includes any type of menu.

If you want your BDirectWindow to be full−screen, but still compatible with menus or other windows, create it as a non−exclusive window, then use
the following code:

 BScreen screen(this);
 MoveTo(0,0);
 ResizeTo(screen.width, screen.height);

This will make the non−exclusive direct window fill the entire screen. Keep in mind that in this case, other windows may appear in front of yours, and
if the screen resolution changes, you will have to resize the window yourself if you want to continue to fill the entire screen.

 Using a Direct Window

Let's put together a simple class, derived from BDirectWindow, that demonstrates the basics of drawing into a direct window.

 class DirectSample : public BDirectWindow {
 public:
 DirectSample(BRect frame);
 ~DirectSample();
 virtual bool QuitRequested();
 virtual void DirectConnected(direct_buffer_info *info);

 uint8 *fBits;
 int32 fRowBytes;
 color_space fFormat;
 clipping_rect fBounds;

 uint32 fNumClipRects;
 clipping_rect *fClipList;

 bool fDirty; // needs refresh?
 bool fConnected;
 bool fConnectionDisabled;
 BLocker *locker;
 thread_id fDrawThreadID;
 };

The DirectSample class implements a constructor as well as the QuitRequested() and DirectConnected() functions.

Some variables are added to the class for cacheing information about the frame buffer.

• fBits will contain a pointer to the frame buffer's bitmap.

• fRowBytes will contain the number of bytes per row of screen data.

• fFormat will contain the pixel format (such as B_CMAP8 for 8−bit indexed color graphics mode). Our sample program will only work in
this mode.

• fBounds will contain the bounds rectangle for the window.

• fNumClipRects will contain the number of rectangles in the clip rectangle list.

• fClipList is the actual list of clip rectangles, and will be allocated on−the−fly as needed.

• fDirty will be true if the window needs to be redrawn.

• fConnected is true if the window is connected to the frame buffer.

• fConnectionDisabled is true if the window is in the process of being closed.

• locker is a BLocker that will be used to ensure mutual exclusion when the frame buffer or buffer information data we've cached is being
manipulated.

• fDrawThreadID contains the thread_id of the drawing thread, which is responsible for drawing the contents of the window.

The specifics of what these variables are and why the information contained in them is maintained will be discussed when we get to the
DirectConnected() and DrawingThread() functions.

The constructor for the DirectSample class looks like this:

 DirectSample::DirectSample(BRect frame)
 : BDirectWindow(frame, "DirectWindow Sample",

 BDirectWindow

4

#BWindow
#BWindow
#BView
#QuitRequested()
#B_CMAP8
#BLocker
#thread_id

 B_TITLED_WINDOW,
 B_NOT_RESIZABLE|B_NOT_ZOOMABLE) {

 fConnected = false;
 fConnectionDisabled = false;
 locker = new BLocker();
 fClipList = NULL;
 fNumClipRects = 0;

 AddChild(new SampleView(Bounds()));

 if (!SupportsWindowMode()) {
 SetFullScreen(true);
 }

 fDirty = true;
 fDrawThreadID = spawn_thread(DrawingThread, "drawing_thread",
 B_NORMAL_PRIORITY, (void *) this);
 resume_thread(fDrawThreadID);
 Show();
 }

This code establishes the direct window by deferring to BDirectWindow. Then the fConnected and fConnectionDisabled flags are initialized
to indicate that the window isn't connected yet, but the connection isn't in the process of being torn down by the DirectSample destructor. The
locker is created, and the clip rectangle list is initialized to a NULL pointer, with a count of 0.

Then it adds a child view that occupies the entire window. The primary purpose of this view in this sample is to set the view color to
B_TRANSPARENT_32_BIT, to prevent the application server from erasing the window with a default color.

If the video card doesn't support window mode, we call SetFullScreen() to switch the direct window into full−screen exclusive mode. This
guarantees that you'll get connected with direct screen access (in a window if possible, otherwise in full−screen exclusive mode). If you don't use
SetFullScreen() , and window mode isn't supported, DirectConnected() will never be called, and you won't have direct screen access.

Then the fDirty flag is set to true, which indicates that the window needs to be updated, and the drawing thread is started; the drawing thread will
handle all actual drawing into the window. The argument passed to the drawing thread is a pointer to the DirectSample window itself. You should
always use a separate thread for drawing into a BDirectWindow.

Finally, Show() is called to make the direct window visible.

The destructor needs to make sure there's no chance someone will try to draw while the window is being destructed:

 DirectSample::~DirectSample() {
 int32 result;

 fConnectionDisabled = true; // Connection is dying
 Hide();
 Sync();
 wait_for_thread(fDrawThreadID, &result);
 free(fClipList);
 delete locker;
 }

The first thing the destructor does is set the fConnectionDisabled flag to true, which indicates that the window is in the process of being
destroyed, and that future calls to DirectConnected() or the drawing thread should be ignored. The window is then hidden by calling Hide().
Finally, Sync() is called to block until the window is actually hidden.

wait_for_thread() waits until the drawing thread terminates. The drawing thread (as we'll see shortly) is designed to terminate when the
fConnectionDisabled flag is true.

Then the clip rectangle list is freed and the locker deleted.

The QuitRequested() function is implemented as usual.

The DirectConnected() function is called whenever a change occurs that affects how your code should access the frame buffer:

 void DirectSample::DirectConnected(direct_buffer_info *info) {
 if (!fConnected && fConnectionDisabled) {
 return;
 }
 locker−>Lock();

 switch(info−>buffer_state & B_DIRECT_MODE_MASK) {
 case B_DIRECT_START:
 fConnected = true;
 case B_DIRECT_MODIFY:
 // Get clipping information

 if (fClipList) {
 free(fClipList);
 fClipList = NULL;
 }
 fNumClipRects = info−>clip_list_count;
 fClipList = (clipping_rect *)
 malloc(fNumClipRects*sizeof(clipping_rect));
 if (fClipList) {
 memcpy(fClipList, info−>clip_list,
 fNumClipRects*sizeof(clipping_rect));
 fBits = (uint8 *) info−>bits;
 fRowBytes = info−>bytes_per_row;
 fFormat = info−>pixel_format;
 fBounds = info−>window_bounds;
 fDirty = true;

 }
 break;
 case B_DIRECT_STOP:

 BDirectWindow

5

#Transparency%20Constants
#Sync()
#wait_for_thread()
#QuitRequested()

 fConnected = false;
 break;
 }
 locker−>Unlock();
 }

DirectConnected() begins by checking the fConnected and fConnectionDisabled flags; the code in DirectConnected() is only
run if the connection is opened (fConnected is true) or if we want to start it again (fConnectionDisabled is false). This arrangement
prevents the DirectConnected() function from trying to reconnect if the destructor has started running. Otherwise, the locker is locked, to
prevent DirectConnected() and the drawing thread from colliding.

If the buffer state is B_DIRECT_START, the fConnected flag is set to true. This keeps track of the fact that the application server has given
permission to draw directly into the region of the frame buffer controlled by the direct window.

If the buffer state is B_DIRECT_START or B_DIRECT_MODIFY (in which case the direct_buffer_info structure describes changes to the
frame buffer), any previously−existing clip rectangle list is deleted, then we cache the information that interests us and set the fDirty flag to
true (to indicate that the display needs to be redrawn to reflect the changed graphics settings).

The clip list is also cached by saving the number of rectangles in the list in the fNumClipRects field and by making a copy of the clip list into a
newly malloc()d block of memory.

If the state is B_DIRECT_STOP, the fConnected flag is set to false, to indicate that we shouldn't draw into the frame buffer anymore.

Finally, the locker is unlocked, which lets the drawing thread start running again.

Now let's have a look at DrawingThread(); this function serves as the drawing thread, and is a global function:

 int32 DrawingThread(void *data) {
 DirectSample *w;

 w = (DirectSample *) data;
 while (!w−>fConnectionDisabled) {
 w−>locker−>Lock();
 if (w−>fConnected) {
 if (w−>fFormat == B_CMAP8 && w−>fDirty) {
 int32 y;
 int32 width;
 int32 height;
 int32 adder;
 uint8 *p;
 clipping_rect *clip;
 int32 i;

 adder = w−>fRowBytes; // Stash locally for this pass
 for (i=0; i<w−>fNumClipRects; i++) {
 clip = &(w−>fClipList[i]);
 width = (clip−>right − clip−>left)+1;
 height = (clip−>bottom − clip−>top)+1;
 p = w−>fBits+(clip−>top*w−>fRowBytes)+clip−>left;
 y = 0;
 while (y < height) {
 memset(p, 0x00, width);
 y++;
 p+=adder;
 }
 }
 }
 w−>fDirty = false;
 }
 w−>locker−>Unlock();
 // Use BWindow or BView APIs here if you want
 snooze(16000);
 }
 return B_OK;
 }

DrawingThread() starts by casting the argument, data, into a pointer to the DirectSample window into which it will be drawing.

The while loop that follows will continue to run as long as the fConnectionDisabled flag is truein other words, it will keep looping as long as
the connection is enabled.

The drawing loop itself begins by locking the locker to ensure that DirectConnected() doesn't change anything while we're working, then
checking to be sure the connection is opened (fConnected is true). If the connection is open, we verify that format of the window is still 8−bit
color and that the display needs to be updated. If the display needs updating and the pixel format is still B_CMAP8, the drawing code begins.

The fRowBytes field of the DirectSample window is cached in a local variable called adder. Then each rectangle in the clip list is drawn, one at a
time, using a for loop.

A pointer to the clip rectangle to be drawn is stored in clip, and the width and height of the rectangle are computed. Then p is set to be a pointer
to the first pixel in the frame buffer that's contained by the clip rectangle. Since 8−bit color pixels each occupy exactly one byte of video memory, this
pixel's address can be computed by taking the base fBits pointer, adding the number of bytes per row times the number of rows between the top of
the screen and the first row in the clip rectangle, then adding the number of bytes between the left edge of the screen and the left edge of the clip
rectangle, as seen in the line:

 p = w−>fBits+(clip−>top*w−>fRowBytes)+clip−>left;

Then a while loop is used to iterate over each line in the clip rectangle, by ranging the variable y from 0 to the height of the clip rectangle.
memset() is used to clear the row to black, which is represented by the byte value 0x00. y is incremented by one for each pass through the loop, to
count the rows being drawn for each iteration, and the pointer p is incremented by adder to move down to the beginning of the next row in the clip
rectangle.

Once each clip rectangle has been drawn, the for loop exits, and the fDirty flag is set to false to indicate that the screen is up−to−date. Once that's
done, the locker is unlocked, which lets DirectConnected() do its thing if it's called. To avoid using an unreasonable amount of processing time,

 BDirectWindow

6

#malloc()
#B_CMAP8

snooze() is called to give up CPU time to other threads.

If you want to use calls to BWindow or BView API in your drawing thread, you should do so just after unlocking the window.

When the thread terminates (which will only happen when the connection is disabled), the drawing thread returns B_OK.

This drawing function is designed to draw nothing unless it's necessary; DirectConnected() will set the fDirty flag when something happens
to cause the screen to need a refresh, and other code elsewhere in the application could also set the fDirty flag to indicate that the screen should be
redrawn.

Since we're taking over drawing the contents of the window, we need to tell the application server not to draw anything. This is done by adding the
following line to the constructor for the SampleView:

 SetViewColor(B_TRANSPARENT_32_BIT);

This is very important: if you don't remember to do this, you'll have all kinds of synchronization problems when the application server and your
drawing code try to draw into the window at the same time.

Note that this sample code doesn't really do anything useful (if all you want to do is have a black window moving around, don't use
BDirectWindowuse a regular BWindow, throw a BView into it, and use SetViewColor() to make the view black; it'll be faster and more efficient
because it will use hardware graphics acceleration if it's available). However, it serves as a simple example of how to establish a connection to let your
own drawing code directly access the screen. Just replace the code inside the drawing loop with something more useful (like a nifty real−time
animation).

 Hook Functions
DirectConnected()

The DirectConnected() hook function is called when the connection to the screen has been made, a change has occurred to the size or format of
the frame buffer, a change has occurred to the position, size, or shape of the visible part of the content area of the window, or the connection to the
screen is terminated.

 Constructor and Destructor

 BDirectWindow()

BDirectWindow(BRect frame, const char *title, window_type type, uint32 flags,
 uint32 workspace = B_CURRENT_WORKSPACE)

BDirectWindow(BRect frame, const char *title, window_look look,
 window_feel feel, uint32 flags,
 uint32 workspace = B_CURRENT_WORKSPACE)

Creates and returns a new BDirectWindow object. This is functionally equivalent to the BWindow constructor, except the resulting BDirectWindow
supports direct window operations.

You will probably want to set up a flag to keep track of whether or not the direct window's connection to the screen is viable. In the constructor, you
should set this flag (let's call it fConnectionDisabled) to false , which indicates to both DirectConnected() and your drawing thread
that the window is not in the process of being deconstructed. The destructor would then set this flag to true before terminating the connection to
avoid the unlikely possibility of the connection trying to restart while the BDirectWindow is being dismantled.

You'll also need other flags or semaphores (or benaphores) to manage the interaction between the BDirectWindow and your drawing thread.

See the sample code in "Using a Direct Window" on page9 for an example.

 ~BDirectWindow()

~BDirectWindow()

Frees all memory the BDirectWindow object allocated for itself. You should never delete a BDirectWindow object; call its Quit() or
Close() function instead.

Your BDirectWindow destructor should begin by setting the fConnectionDisabled flag to true , to prevent DirectConnected() from
attempting to reconnect to the direct window while it's being deconstructed.

Then you should call Hide() and Sync() to force the direct window to disconnect direct access:

 MyDirectWindow::~BDirectWindow {
 fConnectionDisabled = true;
 Hide();
 Sync();

 BDirectWindow

7

#snooze()
#BWindow
#BView
#B_OK
#BWindow
#BView
#SetViewColor()
#BRect
#BRect
#BWindow
#Using%20a%20Direct%20Window%20on%20page9
#Close()
#Sync()

 /* complete usual destruction here */
 }

 Member Functions

 DirectConnected()

virtual void DirectConnected(direct_buffer_info * info)

This hook function is the core of BDirectWindow. Your application should override this function to learn about the state of the graphics display onto
which you're drawing, as well as to be informed of any changes that occur.

This function is also called to suspend and resume your direct access privileges.

Your code in this function should be as short as possible, because what your DirectConnected() function does can affect the performance of the
entire system. DirectConnected() should only handle the immediate task of dealing with changes in the direct drawing context, and shouldn't
normally do any actual drawingthat's what your drawing thread is for.

If you have drawing that absolutely has to be done before you can safely return control to the application server (see the note below), you may do so,
but your code should do the absolute minimum drawing necessary and leave everything else to the drawing thread.

DirectConnected() should only return when it can guarantee to the application server that the request specified by
info will be strictly obeyed.

The structure pointed to by info goes away after DirectConnected() returns, so you should cache the information that interests you.

If your DirectConnected() implementation doesn't handle a request within three seconds, the Application Server will
intentionally crash your application under the assumption that it's deadlocked. Be sure to handle requests as quickly as
possible.

See "Getting Connected (and Staying That Way)" on page5 for more information about the direct_buffer_info structure.

 GetClippingRegion()

status_t GetClippingRegion(BRegion *region , BPoint *origin = NULL) const

Sets the specified region to match the current clipping region of the direct window. If origin is specified, each point in the region is offset by the
origin, resulting in a BRegion that's localized to your application's vision of where in space the origin is (relative to the origin of the screen's frame
buffer).

Although the direct_buffer_info structure contains the clipping region of a direct window, it's not in standard BRegion form. This function is
provided so you can obtain a standard BRegion if you need one.

The GetClippingRegion() function can only be called from the DirectConnected() function; calling it from outside
DirectConnected() will return invalid results.

If you need to cache the clipping region of your window and need a BRegion for clipping purposes, you could use the following code inside your
DirectConnected() function:

 BRegion rgn;
 GetClippingRegion(&rgn);

This serves a double purpose: it obtains the clipping region in BRegion form, and it returns a copy of the region that you can maintain locally.
However, it may be more efficient to copy the clipping region by hand, since the clipping rectangle list used by BDirectWindow uses integer numbers,
while BRegion uses floating−point.

 BDirectWindow

8

#TempoChange(),SprayTempoChange()
#Getting%20Connected%20(and%20Staying%20That%20Way)%20on%20page5
#BRegion
#BPoint
#TempoChange(),SprayTempoChange()
#BRegion
#BRegion
#BRegion
#BRegion
#BRegion
#BRegion

RETURN CODES

• B_OK. The clipping region was successfully returned.

• B_ERROR. An error occurred while trying to obtain the clipping region.

 IsFullScreen() , SetFullScreen()

bool IsFullScreen(void) const

status_t SetFullScreen(bool enable)

IsFullScreen() returns true if the direct window is in full−screen exclusive mode, or false if it's in window mode.

The value returned by IsFullScreen() is indeterminate if a call to SetFullScreen() is in progressif this is the case, you shouldn't rely on
the resulting value. Instead, it would be safer to maintain a state setting of your own and use that value.

SetFullScreen() enables full−screen exclusive mode if the enable flag is true. To switch to window mode, pass false. The
SupportsWindowMode() function can be used to determine whether or not the video card is capable of supporting window mode. See "Window
Mode vs. Full Screen Mode" on page8 for a detailed explanation of the differences between these modes.

When your window is in full screen mode, it will always have the focus, and no other window can come in front of it.

SetFullScreen() can return any of the following result codes.

RETURN CODES

• B_OK. The mode was successfully changed.

• B_ERROR. An error occurred while trying to switch between full screen and window modes (for example, another window may already be
in full−screen exclusive mode in the same workspace).

SetFullScreen() see IsFullScreen()

 SupportsWindowMode()

static bool SupportsWindowMode(screen_id id = B_MAIN_SCREEN_ID)

Returns true if the specified screen supports window mode; if you require the ability to directly access the frame buffer of a window (rather than
occupying the whole screen), you should call this function to be sure that the graphics hardware in the computer running your application supports it.
Because this is a static function, you don't have to construct a BDirectWindow object to call it:

 if (BDirectWindow::SupportsWindowMode()) {
 /* do stuff here */
 }

In particular, window mode requires a graphics card with DMA support and a hardware cursor; older video cards may not be capable of supporting
window mode.

If window mode isn't supported, but you still select window mode, DirectConnected() will never be called (so you'll never be authorized for
direct frame buffer access).

Even if window mode isn't supported, you can still use BDirectWindow objects for full−screen direct access to the frame buffer, but it's recommended
that you avoid direct video DMA or the use of parallel drawing threads that use both direct frame buffer access and BView calls (because it's likely
that such a graphics card won't handle the parallel access and freeze the PCI busand that would be bad).

 BDirectWindow

9

#B_OK
#B_ERROR
#TempoChange(),SprayTempoChange()
#Window%20Mode%20vs.%20Full%20Screen%20Mode%20on%20page8
#Window%20Mode%20vs.%20Full%20Screen%20Mode%20on%20page8
#B_OK
#B_ERROR
#TempoChange(),SprayTempoChange()
#BView

 BFileGameSound
Derived from: BStreamingGameSound

Declared in: be/game/FileGameSound.h

Library: libgame.so

Allocation: Constructor only

Summary

If you want to play back audio from a disk file, such as background music, or low−priority sound effects, BFileGameSound is for you. Keep in mind
that if the sound needs to play at precise moments, or latency is an issue, that BFileGameSound may not be appropriate for your needs.

Using BFileGameSound is easy, and it supports automatically looping sounds. The following code snippet starts up the theme music for the hot new
game "Mystery Warriors From the Doomed Planet Z":

 BFileGameSound themeSong("music/theme.aif", true);
 themeSong.StartPlaying();

This starts up a looped sound from the file music/theme.aif. If you want the theme to only play through once, just specify false instead of true for
the looping argument to the BFileGameSound constructor.

You can pause the BFileGameSound by calling SetPaused():

 themeSong.SetPaused(true, 0);

This pauses the sound, effective immediately. The pause can optionally be ramped, so that the sound slows down or speeds up to reach the new setting.
For example:

 themeSong.SetPaused(true, 2);

This causes the sound to slow down over the course of two seconds, until it's stopped.

The inverse is also possible:

 themeSong.SetPaused(false, 0);

This resumes playback immediately. You can ramp the resume by specifying a non−zero value for the ramp time.

BFileGameSound uses the BMediaFile class to access the sound file. If BMediaFile can't identify the sound, the file is assumed to contain raw
44.1kHz, 16−bit stereo.

 Constructor and Destructor

 BFileGameSound()

BFileGameSound(const entry_ref *inFile,
 bool looping = true,
 BGameSoundDevice *device = NULL)

BFileGameSound(const char *inFile,
 bool looping = true,
 BGameSoundDevice *device = NULL)

Prepares the object to play the specified sound file, which can be specified either by entry_ref or pathname in the inFile argument.

If the looping flag is true (which it is by default), the sound automatically loops back to the beginning and replays when the end of the sound is
reached. This is useful for easily playing background music (for example).

In both cases, device specifies the sound device that should be used for playing the sound; NULL uses the default sound player.

Currently, device must always be NULL.

After instantiating the BFileGameSound object, you should call InitCheck() to determine whether or not the sound was
successfully created.

 ~BFileGameSound

10

FileGameSound.h
FileGameSound.summary.html
#BMediaFile
#BMediaFile

virtual ~BFileGameSound()

A typical destructor.

 Member Functions

 InitCheck()

status_t InitCheck(void) const

Returns a status_t indicating whether or not the object was successfully instantiated.

RETURN CODES

B_OK. The sound was successfully initialized.

• B_ERROR. Unable to create a sound player.

• B_NO_MEMORY. Can't get enough memory to preload the sound.

• Other errors. The sound player may return errors.

IsPaused() see SetPaused()

 Preload()

status_t Preload(void)

Preload() preloads enough of the sound file into memory that starting playback of the sound won't cuase a delay while the first chunk of data is
fetched from disk.

RETURN CODES

B_OK. Preloading was successful.

• Port errors. Unable to communicate with the streaming sound port.

 SetPaused() , IsPaused()

status_t SetPaused(bool isPaused, bigtime_t rampTime)

int32 IsPaused(void)

SetPaused() pauses if isPaused is true, and unpauses if isPaused is false. If rampTime is nonzero, the sound ramps up to speed (or down
to stopped) instead of instantly changing state. The number of microseconds specified by rampTime indicates how long the change should take to
complete.

IsPaused() returns value indicating whether or not the sound is paused, or if a pause is in process of being initiated (if ramping is underway). The
result is one of these values:

• B_NOT_PAUSEDthe sound is playing normally.

• B_PAUSE_IN_PROGRESSthe sound is ramping toward or away from a paused state.

• B_PAUSEDthe sound is paused.

Because these constants are members of the BFileGameSound class, be sure to refer to them as BFileGameSound::B_NOT_PAUSED and so forth.

RETURN CODES

B_OK. The pause occurred without error.

• EALREADY. The sound is already in the requested state.

 BFileGameSound

11

#B_OK
#B_ERROR
#B_NO_MEMORY
#B_OK
#B_OK

•

 BFileGameSound

12

 BGameSound
Derived from: none

Declared in: be/game/GameSound.h

Library: libgame.so

Allocation: Constructor only

Summary

The BGameSound class is the base class for other game sound classes. You never use this class directly; instead, you should use the derived classes.

 The Sound of Explosions in the Morning
Nothing makes the player happy like the sound of lots of explosions, weird alien things, and other thrilling audio pleasures. The various
BGameSound−derived classes make this a snap.

 Choosing a Player Class

Playing a sound is as simple as instantiating an object derived from the most appropriate class and calling StartPlaying() on it. How do you
determine the most appropriate class? Here are some hints:

• If you have a sound effect that's short and is likely to be played often, or needs to be played with minimal latency, use the BSimpleGameSound class.
An arcade game's explosions definitely fit into this class.

• If you have a sound effect that's very long, or doesn't need to be played very often, or whose latency doesn't matter much, use the
BFileGameSound class. Music loops can take advantage of this class.

• If you want to be able to push audio buffers at the system, instead of having a callback that fills buffers, use the BPushGameSound class.

Most games' needs will be filled by the BSimpleGameSound and BFileGameSound classes. And, of course, you can write your own derived classes if
none of these classes meet your requirements.

 Polyphony

Sometimes the player needs to hear multiple copies of the same sound at the same time; for instance, if they shoot a three−way splitting weapon and
hit two targets, they need to hear two explosions at once. Each BGameSound (or BGameSound−derived) object can play only once at a time, so you'll
need to use cloned copies of the sound, one for each channel of polyphony you allow.

This can be done with ease using a simple class like this:

 class MultipleEffect {
 public:
 MultipleEffect(BGameSound * sound, int polyphony) {
 m_fx = new BGameSound *[polyphony];
 m_fx[0] = sound;
 for (int ix=1; ix<polyphony; ix++) {
 m_fx[ix] = sound−>Clone();
 }
 m_current = 0;
 m_polyphony = polyphony;
 }
 void StartPlaying() {
 int id = atomic_add(&m_current, 1) % m_polyphony;
 m_fx[id]−>StartPlaying();
 }

 private:
 int32 m_current;
 int32 m_polyphony;
 BGameSound *m_fx;
 };

This class' constructor lets you specify a BGameSound−derived sound and the maximum number of times it can be playing at once. It creates the
appropriate number of clones, and its StartPlaying() implementation automatically selects the oldest one and reuses it. Since
StartPlaying() restarts a sound from the beginning if it's called on a playing sound, this works out wellif polyphony is 3, and there are already
three sounds playing, the oldest one will be reset and played from the beginning.

In the current version of the BeOS, when you clone a BSimpleGameSound, the sound data buffer is also cloned, so you'll
have multiple copies of the sound effect in memory. Keep this in mind as you write your code, as you can rapidly use a
lot of memory this way.

13

GameSound.h
GameSound.summary.html

 Performance Verification

There are a wide variety of performance concerns, and of course you want your game to work on as many systems as possible. Be recommends that
you test your application in at least these three situations:

• Real−time audio disabled, using an ISA sound card (such as an AWE64 or equivalent card).

• Real−time audio enabled, using a PCI sound card (SoundBlaster PCI 64 or equivalent).

• Real−time audio enabled, using an E−mu 10k sound card. This sound card has its own node, so its behavior is a little different, and is
therefore worth special testing attention.

This isn't intended to be an exhaustive list; you should always test your software in as many configurations as possible.

 Constructor and Destructor

 BGameSound()

BGameSound(BGameSoundDevice *device = NULL)

Initializes the sound object.

Currently, device must always be NULL.

 ~BGameSound

virtual ~BGameSound()

Releases any memory used by the BGameSound.

If your node has created and set BBufferGroups for any producers, you should delete them in the destructor.

 Member Functions

 Clone()

virtual BGameSound *Clone(void) const = 0

Returns a copy of the game sound object. Not implemented in this base class; derived classes must implement it.

 Device()

BGameSoundDevice *Device(void) const

Returns a pointer to the BGameSoundDevice responsible for playing the sound. This is NULL if the default device is being used.

 Format()

 BGameSound

14

const gs_audio_format &Format(void) const

Returns a gs_audio_format structure describing the format of the sound.

Gain() see SetGain()

GetAttributes() see SetAttributes()

 ID()

gs_id ID(void) const

Returns the ID of the sound attached to the BGameSound object. This is 0 if no sound has been selected.

 Init()

protected:

status_t Init(gs_id soundHandle)

Specifies the sound to be played by the object.

RETURN CODES

B_OK. The initialization was successful.

• B_ERROR. The constructor failed.

• Other errors. The player may return other errors.

 InitCheck()

status_t InitCheck(void) const

Returns a status_t indicating whether or not the object was successfully initialized. A return value of B_OK means everything's fine; any other value
means an error occurred in the constructor.

 IsPlaying()

virtual bool IsPlaying(void)

Returns true if the sound is currently playing; otherwise this function returns false.

 LockMemoryPool()

static status_t LockMemoryPool(bool lockInCore)

This function lets you specify whether or not the BGameSound's memory pool (from which buffers are drawn) is locked in memory. Locking the pool
may increase performance, but will increase your memory requirements and may reduce the ability of the computer to use virtual memory efficiently.

You can only set the lock state from within the constructor of a derived class. Once the state has been set, it can't be

 BGameSound

15

#B_OK
#B_ERROR
#B_OK

changed.

RETURN CODES

B_OK. The pool's lock state has been set.

• EALREADY. The lock state has already been set.

Pan() see SetPan()

 SetAttributes() , GetAttributes()

virtual status_t SetAttributes(gs_attribute *inAttributes, size_t inAttributeCount)

virtual status_t GetAttributes(gs_attribute *ioAttributes, size_t inAttributeCount)

SetAttributes() sets the sound's attributes to match those in the inAttributes array; inAttributeCount indicates how many attributes are in the
list.

GetAttributes() returns the sound's current attributes. The ioAttributes list contains a list of inAttributeCount gs_attribute structures;
each entry indicates in its attribute field which attribute is to be stuffed into that slot in the array. On return, these attributes are filled out.

RETURN CODES

B_OK. The attribute changes were recorded.

• B_ERROR. The player wasn't initialized properly.

 SetGain() , Gain()

status_t SetGain(float gain, bigtime_t rampDuration = 0)

float Gain(void)

SetGain() sets the sound's gain (volume). If rampDuration is nonzero, the change in gain will take rampDuration to occurthe gain will fade
between the current value and the new value over the specified number of microseconds. If rampDuration is 0, the change will be immediate.

Gain() returns the sound's current gain.

The gain ranges from 0.0 (silent) to 1.0 (maximum gain).

RETURN CODES

B_OK. The gain change was recorded.

• B_ERROR. The object hasn't been initialized properly.

• Other errors. The derived class may return other appropriate errors.

 SetInitError()

protected:

status_t SetInitError(status_t initError)

Sets the error code that InitCheck() will return. Derived classes should call this from their constructors.

 SetMaxSoundCount()

 BGameSound

16

#B_OK
#B_OK
#B_ERROR
#B_OK
#B_ERROR

static int32 SetMaxSoundCount(int32 maxSoundCount)

This function lets you specify the maximum number of BGameSound−derived objects that can be in use at once. This value must be between 32 and
1024; if it's outside this range, it gets pinned to 32 or 1024. The actual value set is returned.

 SetMemoryPoolSize()

status_t SetMemoryPoolSize(size_t poolSize)

Sets the size of the memory pool from which sound buffers can be obtained to the number of bytes specified by poolSize. This value must be between
128kB and 4MB, or B_BAD_VALUE will be returned.

You can't change the size of the memory pool once it's been allocated.

In general you'll only call this function if you're implementing a new BGameSound subclass.

RETURN CODES

B_OK. The memory pool size has been set.

• B_BAD_VALUE. The requested pool size is invalid.

• EALREADY. The memory pool has already been allocated; you can't change its size.

 SetPan() , Pan()

status_t SetPan(float pan, bigtime_t rampDuration = 0)

float Pan(void)

SetPan() sets the sound's pan. This value, which ranges from −1.0 to 1.0, indicates the apparent position of the sound (from absolute left to absolute
right). A value of 0 indicates that the sound should appear to come from directly in front of the user. If rampDuration is nonzero, the change in
position will take rampDuration to occurthe sound will seem to move from the initial position to the new position over the specified number of
microseconds. If rampDuration is 0, the change will be immediate.

Pan() returns the sound's current pan.

RETURN CODES

B_OK. The pan change was recorded.

• B_ERROR. The object hasn't been initialized properly.

• Other errors. The derived class may return other appropriate errors.

 StartPlaying() , StopPlaying()

virtual status_t StartPlaying(void)

virtual status_t StopPlaying(void)

StartPlaying() begins playback of the sound. StopPlaying() ends playback.

If you call StartPlaying() on a sound that's already playing, it stops and restarts from the beginning.

These return B_OK if all is well, or an appropriate error code if not; the error depends on the derived class being used.

RETURN CODES

B_OK. No error.

 BGameSound

17

#B_BAD_VALUE
#B_OK
#B_BAD_VALUE
#B_OK
#B_ERROR
#B_OK
#B_OK

• EALREADY. The sound is already playing (if you called StartPlaying()) or not playing (if you called StopPlaying()).

• Other errors, as determined by the subclass.

 BGameSound

18

 BPushGameSound
Derived from: BStreamingGameSound

Declared in: be/game/PushGameSound.h

Library: libgame.so

Allocation: Constructor only

Summary

The BPushGameSound class lets you push buffers of audio data, instead of waiting to be asked for them.

 How It Works
The BPushGameSound class uses a single sound buffer, consisting of multiple pages, which play continuously in a loop. Each page is used to construct
an audio BBuffer that eventually gets played, and is then recycled and reused again later.

For example, if the sound buffer is 256 kilobytes, and each page is 4 kilobytes, there are 64 pages of audio. When you start the BPushGameSound
object, playback begins with the first page. A BBuffer is constructed using that page, then played, and then the buffer is recycled, and the next page is
used to create another BBuffer, and so forth. This continues to the 64th page. Once that page is played, playback loops back to the first page again.

Your code pushes audio data into these audio pages. There are two ways you can do this.

 Exclusive Access

The first way is to ask the BPushGameSound class to give you a page to fill with audio data. This is done by calling LockNextPage(). This gives
you exclusive access to the next audio page that needs to be filled; you can fill it with whatever sound you want to push, then call UnlockPage() to
release it. It won't be played while it's locked, so you need to stuff your sound into it and release it as quickly as possible.

 The Neverending Story

The second way takes better planning, but can give you lower overhead. Call LockForCyclic() to request access to the entire sound buffer area.
This doesn't give you exclusive access, so playback never stopsit keeps looping the entire time, while you write into it. The
CurrentPosition() function tells you where in the buffer area playback is currently occurring.

Your mission (should you choose to accept it) is to stuff audio into the buffer, keeping ahead of this position far enough that playback never catches up
to you. As a general rule, you should try to stay at least a page ahead of the current playback position. Keep in mind that when you reach the end of the
buffer area, you need to wrap back to the beginning.

This takes more careful effort on your part, but once you have your code properly tuned, you can get very low overhead audio playback this way.

 Constructor and Destructor

 BPushGameSound()

BPushGameSound(size_t inBufferFrameCount,
 const gs_audio_format *format,
 size_t inBufferCount = 2,
 BGameSoundDevice *device = NULL)

Prepares the object to play audio pushed by your application. inBufferFrameCount specifies the number of frames each audio buffer should be able to
hold. format indicates the audio format that will be streamed. inBufferCount specifies the number of buffers to use, and, as always, device is the
sound device to use for playback.

Currently, device must always be NULL to indicate that the default playback device should be used.

By default, two audio buffers are used.

Be sure to call InitCheck() before using the BPushGameSound object.

 ~BPushGameSound

19

PushGameSound.h
PushGameSound.summary.html
#BBuffer
#BBuffer
#BBuffer

virtual ~BPushGameSound()

Deletes the semaphore used to lock the object.

 Member Functions

CurrentPosition() see LockForCyclic()

 InitCheck()

status_t InitCheck(void) const

Returns a status_t indicating whether or not the object was successfully initialized. A return value of B_OK means everything's fine; any other value
means an error occurred in the constructor.

 LockForCyclic() , UnlockCyclic() , CurrentPosition()

virtual lock_status LockForCyclic(void **outBasePtr, size_t *outSize)

virtual status_t UnlockCyclic(void)

virtual size_t CurrentPosition(void)

LockForCyclic() gives you access to the entire sound buffer; audio playback continues while you have access. Use CurrentPosition() to
determine where the playback is currently located in the buffer area, and be sure to stay well ahead of it. See the overview for a more in−depth
discussion. If lock_failed is returned, you can't access the audio area, but if lock_ok is returned, you can start pushing audio.

On return, outBasePtr points to the first byte of the audio buffer area, and outSize indicates the total size of the audio buffer area.

UnlockCyclic() releases the audio area.

RETURN CODES

B_OK. UnlockCyclic() succeeded.

• Other errors may be returned by UnlockCyclic() in the future.

UnlockCyclic() see LockForCyclic()

 LockNextPage() , UnlockPage()

virtual lock_status LockNextPage(void **outPagePtr, size_t *outPageSize)

virtual status_t UnlockPage(void *inPagePtr)

LockNextPage() requests access to the next page of the sound buffer. The return value is lock_ok or lock_ok_frames_dropped if a valid
page has been returned. If either of these values is returned, you can then write up to outPageSize bytes of audio data into the audio page returned in
outPagePtr.

If lock_failed is returned, you can't access an audio page.

UnlockPage() releases the audio page pointed to by inPagePtr.

RETURN CODES

B_OK. UnlockPage() succeeded.

• Other errors may be returned by UnlockPage() in the future.

 BPushGameSound

20

#B_OK
#B_OK
#B_OK

UnlockPage() see LockNextPage()

 Constants

 lock_status

Declared in: <be/game/PushGameSound.h>

lock_failed Couldn't get the lock; it's not time to update yet.

lock_ok Locked; you can update.

lock_ok_frames_dropped Lccked; you can update, but you may have missed some buffers.

These values are returned by the locking functions in the BPushGameSound class (LockNextPage() and LockForCyclic()). If either function
returns lock_failed, there isn't a buffer to be filled; your code is pushing buffers too fast.

If lock_ok is returned, the next buffer is ready. The lock_ok_frames_dropped result is received if a buffer is available but some buffers have
been lost; this can happen if you're not pushing fast enough.

 BPushGameSound

21

 BSimpleGameSound
Derived from: BGameSound

Declared in: be/game/SimpleGameSound.h

Library: libgame.so

Allocation: Constructor only

Summary

The BSimpleGameSound class represents simple sound effects that don't change, and remain in memory.

Using BSimpleGameSound is, well, simple:

 BSimpleGameSound *mysound = new BSimpleGameSound("soundfile.wav");
 ...
 mysound.StartPlaying();

This snippet uses BSimpleGameSound to create an object that can be used to play the sound effect in the file "soundfile.wav". Playing the sound is as
simple as calling StartPlaying().

In the current version of the BeOS, when you clone a BSimpleGameSound, the sound data buffer is also cloned, so you'll
have multiple copies of the sound effect in memory. Keep this in mind as you write your code, as you can rapidly use a
lot of memory this way.

 Constructor and Destructor

 BSimpleGameSound()

BSimpleGameSound(const entry_ref *inFile,
 BGameSoundDevice *device = NULL)

BSimpleGameSound(const char *inFile,
 BGameSoundDevice *device = NULL)

BSimpleGameSound(const void *inData, size_t inFrameCount,
 const gs_audio_format *format,
 BGameSoundDevice *device = NULL)

BSimpleGameSound(const BSimpleGameSound &other)

Prepares the object to play the specified sound. The first form of the constructor preloads the entire sound specified by inFile into memory, while the
second accepts a inFile as a pathname string.

The third form takes inData as a pointer to sound data already in memory; this sound data is copied into a buffer owned by the BSimpleGameSound
object; once the constructor returns, you can delete the original data if you wish. The data is copied since some sound cards have an onboard sound
buffer, and the API allows support for these devices (whether or not drivers exist that do this is another story).

inFrameCount indicates how many frames of audio are in that buffer, and format indicates the format of the audio data. The size of the Media Kit
buffers used by the object is determined by the gs_audio_format structure's buffer_size field. If the value this field is zero, the Game Kit
determines an appropriate buffer size for you.

In both cases, device specifies the sound device that should be used for playing the sound; NULL uses the default sound player.

Currently, device must always be NULL.

The final form of the constructor duplicates another BSimpleGameSound object.

After instantiating the BSimpleGameSound object, you should call InitCheck() to determine whether or not the sound was successfully created.

22

SimpleGameSound.h
SimpleGameSound.summary.html

 ~BSimpleGameSound

virtual ~BSimpleGameSound()

A typical destructor.

 Member Functions

 InitCheck()

status_t InitCheck(void) const

Returns a status_t indicating whether or not the object was successfully instantiated.

RETURN CODES

B_OK. The sound was successfully initialized.

• B_ERROR. Unable to create a sound player.

• B_NO_MEMORY. Can't get enough memory to preload the sound.

• Other errors. The sound player may return errors.

 SetIsLooping() , IsLooping()

status_t SetIsLooping(bool looping)

bool IsLooping(void) const

SetIsLooping() turns looping of the sound on if looping is true, or off if looping is false.

IsLooping() returns a flag indicating whether or not looping is currently enabled.

RETURN CODES

B_OK. Looping was turned on or off without error.

• B_ERROR. The player wasn't initialized properly.

•

 BSimpleGameSound

23

#B_OK
#B_ERROR
#B_NO_MEMORY
#B_OK
#B_ERROR

 BStreamingGameSound
Derived from: BGameSound

Declared in: be/game/StreamingGameSound.h

Library: libgame.so

Allocation: Constructor only

Summary

The BStreamingGameSound class provides the ability to stream audio data. A hook function is called whenever a buffer needs to be filled with audio
data. This hook function is set by calling SetStreamHook().

Using this class requires special magic powers; unless you're directly in contact with Be about it, don't use it. You'll regret it later.

 Constructor and Destructor

 BStreamingGameSound()

BStreamingGameSound(size_t inBufferFrameCount,
 const gs_audio_format *format,
 size_t inBufferCount = 2,
 BGameSoundDevice *device = NULL)

protected:

BStreamingGameSound(BGameSoundDevice device)

Prepares the object to play streamed audio. inBufferFrameCount specifies the number of frames each audio buffer should be able to hold.
format indicates the audio format that will be streamed. inBufferCount specifies the number of buffers to use, and, as always, device is the sound
device to use for playback.

Currently, device must always be NULL to indicate that the default playback device should be used.

By default, two audio buffers are used.

 ~BStreamingGameSound

virtual ~BStreamingGameSound()

Stops playing the sound.

 Member Functions

 FillBuffer()

virtual void FillBuffer(void *inBuffer, size_t byteCount)

Fills the buffer specified by inBuffer with byteCount bytes of audio data.

In the BStreamingGameSound implemenation, this function calls the stream hook, if one exists.

See also: SetStreamHook()

24

StreamingGameSound.h
StreamingGameSound.summary.html

 InitCheck()

status_t InitCheck(void) const

Returns a status_t indicating whether or not the object was successfully instantiated.

RETURN CODES

B_OK. The sound was successfully initialized.

• B_ERROR. Unable to create a sound player.

• Other errors. The sound player may return errors.

See also: the BStreamingGameSound constructor

 Lock() , Unlock()

bool Lock(void)

void Unlock(void)

Lock() locks the BStreamingGameSound to prevent unpleasant collisions in the land of multithreadedness; it returns true if it was able to lock the
object, otherwise false is returned. Unlock() releases the lock.

 SetAttributes()

virtual status_t SetAttributes(gs_attribute *inAttributes, size_t inAttributeCount)

SetAttributes() is implemented to disallow the B_GS_LOOPING attribute, since streamed sounds can't loop.

See also: BGameSound::SetAttributes()

 SetParameters()

protected:

virtual status_t SetParameters(size_t inBufferFrameCount,
 const gs_audio_format *format,
 size_t inBufferCount)

Changes the BStreamingGameSound object's parameters. This lets you change the buffer size, audio format, and number of buffers after the object has
been instantiated.

RETURN CODES

B_OK. No error.

• B_ERROR. Couldn't change the parameters.

 SetStreamHook()

virtual status_t SetStreamHook(void (*hook)(void *cookie, void *inBuffer,
 size_t byteCount, BStreamingGameSound *object),

void *cookie)

Specfies the hook function to be called to fill buffers with audio data. cookie indicates the cookie pointer that will be passed to the hook function.

The inputs to the hook function are:

 BStreamingGameSound

25

#B_OK
#B_ERROR
#B_OK
#B_ERROR

• cookie
A user−defined value.

• inBuffer
A pointer to the buffer to be filled with audio data.

• byteCount
The size of the buffer in bytes.

• object
A pointer to the BStreamingGameSound object.

RETURN CODES

B_OK. The hook function was set without error.

Unlock() see Lock()

 BStreamingGameSound

26

 BWindowScreen
Derived from: public BWindow

Declared in: be/game/WindowScreen.h

Library: libgame.so

Summary

A BWindowScreen object provides exclusive access to the entire screen, bypassing the Application Server's window system. The object has direct
access to the graphics card driver: It can set up the graphics environment on the graphics card, call driver−implemented drawing functions, and directly
manipulate the frame buffer.

 Screen Access

Like all windows, a BWindowScreen is hidden (off−screen) when it's constructed. By calling Show() to put it on−screen and make it the active
window, an application takes over the whole screen. While the BWindowScreen is active, the Application Server's graphics operations are
suspendedthis means that you can't use any BView functions, nor any functions in classes derived from BView; you have to draw directly into the
screen's frame buffer, and nothing except what the application draws will be visible to the userno other windows and no desktop. When the
BWindowScreen gives up active status, the Application Server automatically refreshes the screen with its old contents.

Although the BWindowScreen object provides a connection to the screen, you shouldn't draw from the BWindowScreen's thread. Use the thread only
to regulate the access of other threads to the frame buffer.

 Keyboard and Mouse

A BWindowScreen object remains a window while it has control of the screen; it stays attached to the Application Server and its message loop
continues to function. It gets messages reporting the user's actions on the keyboard and mouse, just like any other active window. Because it covers the
whole screen, it's notified of all mouse and keyboard events. You can attach filters to the window to get the messages as they arrive. Or you can call
the Interface Kit's get_key_info() function to poll the state of the keyboard and construct a nominal BView so that you can call GetMouse() to
poll the mouse.

 Workspaces

This class respects workspaces. A BWindowScreen object releases its grip on the screen when the user turns to another workspace and reestablishes its
control when the user returns to the workspace in which it's the active window.

 Debugging

A BWindowScreen object can be constructed in a debugging mode that lets you switch back and forth between the workspace in which the game is
running and a workspace where error messages are printed. See the constructor and the RegisterThread() function for details.

 Hook Functions
ScreenConnected()
Can be implemented to do whatever is necessary when the BWindowScreen object obtains direct access to the frame buffer for the screen, and when it
loses that access.

 Constructor and Destructor

 BWindowScreen()

BWindowScreen(const char *title, uint32 space, status_t *error,
 bool debugging = false)

Initializes the BWindowScreen object by assigning the window a title and specifying a space configuration for the screen. The window won't have a
visible border or a tab in which to display the title to the user. However, otherssuch as the Workspaces applicationcan use the title to identify the
window.

The window is constructed to fill the screen; its frame rectangle contains every screen pixel when the screen is configured according to the
space argument. That argument describes the pixel dimensions and bits−per−pixel depth of the screen that the BWindowScreen object should
establish when it obtains direct access to the frame buffer. It should be one of the following constants:

B_8_BIT_800x600 B_16_BIT_800x600 B_32_BIT_800x600

B_8_BIT_1024x768 B_16_BIT_1024x768 B_32_BIT_1024x768

27

#BWindow
WindowScreen.h
WindowScreen.summary.html
#BView
#get_key_info()
#BView
#B_16_BIT_800x600
#B_16_BIT_1024x768

B_8_BIT_1152x900 B_16_BIT_1152x900 B_32_BIT_1152x900

B_8_BIT_1280x1024 B_16_BIT_1280x1024 B_32_BIT_1280x1024

B_8_BIT_1600x1200 B_16_BIT_1600x1200 B_32_BIT_1600x1200

These are the same constants that can be passed to set_screen_space(), the Interface Kit function that preference applications call to configure
the screen.

The space configuration applies only while the BWindowScreen object is in control of the screen. When it gives up control, the previous configuration
is restored.

The constructor assigns the window to the active workspace (B_CURRENT_WORKSPACE). It fails if another BWindowScreen object in any
application is already assigned to the same workspace.

To be sure there wasn't an error in constructing the object, check the error argument. If all goes well, the constructor sets the error variable to B_OK. If
not, it sets it to B_ERROR. If there's an error, it's likely to occur in this constructor, not the inherited BWindow constructor. Since the underlying
window will probably exist, you'll need to instruct it to quit. For example:

 status_t error;
 MyWindowScreen *screen =
 new MyWindowScreen("Glacier", B_8_BIT_1024x768, &error);
 if (error != B_OK)
 screen−>PostMessage(B_QUIT_REQUESTED, screen);

If the debugging flag is true, the BWindowScreen is constructed in debugging mode. This modifies its behavior and enables three functions,
RegisterThread() , Suspend() , and SuspensionHook(). The debugging regime is described under those functions.

See also: RegisterThread() , the BScreen class in the Interface Kit

 ~BWindowScreen()

virtual ~BWindowScreen()

Closes the clone of the graphics card driver (through which the BWindowScreen object established its connection to the screen), unloads it from the
application, and cleans up after it.

 Member Functions

 CanControlFrameBuffer()

bool CanControlFrameBuffer(void)

Returns true if the graphics card driver permits applications to control the configuration of the frame buffer, and false if not. Control is exercised
through these two functions:

SetFrameBuffer()
MoveDisplayArea()

A return of true means that these functions can communicate with the graphics card driver and at least the first will do something useful. A return of
false means that neither of them will work.

See also: SetFrameBuffer() , MoveDisplayArea()

 CardHookAt()

graphics_card_hook CardHookAt(int32 index)

Returns a pointer to the graphics card "hook" function that's located at index in its list of hook functions. The function returns NULL if the graphics

 BWindowScreen

28

#B_16_BIT_1152x900
#B_16_BIT_1280x1024
#B_16_BIT_1600x1200
#set_screen_space()
#B_CURRENT_WORKSPACE
#B_OK
#B_ERROR
#BWindow
#BScreen

card driver doesn't implement a function at that index or the index is out of range.

The hook functions provide accelerated drawing capabilities. They're documented under "Graphics Card Hook Functions". The first three hook
functions (indices 0, 1, and 2) are not available through the Game Kit; if you pass an index of 0, 1, or 2 to CardHookAt(), it will return NULL even
if the function is implemented.

An application can cache the pointers that CardHookAt() returns, but it should ask for a new set each time the depth or dimensions of the screen
changes and each time the BWindowScreen object releases or regains control of the screen. You'd typically call CardHookAt() in your
implementation of ScreenConnection().

 CardInfo()

graphics_card_info *CardInfo(void)

Returns a description of the current configuration of the graphics card, as kept by the driver for the card. The returned
graphics_card_info structure is defined in be/addons/graphics/GraphicsCard.h and is documented in "The Entry Point and General
Opcodes" in the "Graphics Card Drivers" chapter.

The information returned by this function is only valid when the BWindowScreen is connected to the display.

See also: FrameBufferInfo()

ColorList() see SetColorList()

 Disconnect()

void Disconnect(void)

Forces the BWindowScreen object to disconnect itself from the screento give up its authority over the graphics card driver, allowing the Application
Server to reassert control. Normally, you'd disconnect the BWindowScreen only when hiding the game, reducing it to an ordinary window in the
background, or quitting. The Hide() and Quit() functions automatically disconnect the BWindowScreen as part of the process of hiding and
quitting. Disconnect() allows you to sever the connection before calling those functions.

Before breaking the screen connection, Disconnect() causes the BWindowScreen object to receive a ScreenConnected() notification with a
flag of false . It doesn't return until ScreenConnected() returns and the connection is broken. Hide() and Quit() share this behavior.

See also: Hide() , Quit()

 FrameBufferInfo()

frame_buffer_info *FrameBufferInfo(void)

Returns a pointer to the frame_buffer_info structure that holds the driver's current conception of the frame buffer. The structure is defined in
addons/graphics/GraphicsCard.h and is documented in "Frame Buffer Opcodes" in the "Graphics Card Drivers" chapter.

The information returned by this function is only valid if SetFrameBuffer() has been called.

See also: SetSpace() , SetFrameBuffer() , MoveDisplayArea() , CardInfo()

 Hide() , Show()

 BWindowScreen

29

#Graphics%20Card%20Hook%20Functions
#The%20Entry%20Point%20and%20General%20Opcodes
#The%20Entry%20Point%20and%20General%20Opcodes
#Frame%20Buffer%20Opcodes

virtual void Hide(void)

virtual void Show(void)

These functions augment their BWindow counterparts to make sure that the BWindowScreen is disconnected from the screen before it's hidden and
that it's ready to establish a connection when it becomes the active window.

Hide() calls ScreenConnected() (with an argument of false) and breaks the connection to the screen when ScreenConnected() returns.
It then hides the window.

Show() shows the window on−screen and makes it the active window, which will cause it to establish a direct connection to the graphics card driver
for the screen. Unlike Hide(), it may return before ScreenConnected() is called (with an argument of true).

See also: BWindow::Hide()

 IOBase()

void *IOBase(void)

Returns a pointer to the base address for the input/output registers on the graphics card. Registers are addressed by 16−bit offsets from this base
address. (This function may not be supported in future releases.)

 MoveDisplayArea()

status_t MoveDisplayArea(int32 x, int32 y)

Relocates the display area, the portion of the frame buffer that's mapped to the screen. This function moves the area's left−top corner to (x, y); by
default, the corner lies at (0, 0). The display area must lie entirely within the frame buffer.

MoveDisplayArea() only works if the graphics card driver permits application control over the frame buffer. It must also permit a frame buffer
with a total area larger than the display area. If successful in relocating the display area, this function returns B_OK; if not, it returns B_ERROR.

See also: CanControlFrameBuffer()

 Quit()

virtual void Quit(void)

Augments the BWindow version of Quit() to force the BWindowScreen object to disconnect itself from the screen, so that it doesn't quit while in
control of the frame buffer.

Although Quit() disconnects the object before quitting, this may not be soon enough for your application. For example, if you need to destroy some
drawing threads before the BWindowScreen object is itself destroyed, you should get rid of them after the screen connection is severed. You can force
the object to disconnect itself by calling Disconnect(). For example:

 void MyWindowScreen::Quit()
 {
 Disconnect();
 kill_thread(drawing_thread_a);
 kill_thread(drawing_thread_b);
 BWindowScreen::Quit();
 }

If the screen connection is still in place when Quit() is called, it calls ScreenConnected() with a flag of false. It doesn't return until
ScreenConnected() returns and the connection is broken.

See also: ScreenConnected()

 RegisterThread() , Suspend() , SuspensionHook()

void RegisterThread(thread_id thread)

void Suspend(char *label)

 BWindowScreen

30

#BWindow
#B_OK
#B_ERROR
#BWindow

virtual void *SuspensionHook(bool suspended)

These three functions aid in debugging a game application. They have relevance only if the BWindowScreen is running in debugging mode. To set up
the mode, you must:

• Construct the BWindowScreen with the debugging flag set to true. The flag is false by default.

• Register all drawing threads (all threads that can touch the frame buffer in any way) by passing the thread_id to
RegisterThread() immediately after the thread is spawnedbefore resume_thread() is called to start the thread's execution. The
window thread for the BWindowScreen object should not draw and should not be registered.

• Launch the application from the command line in a Terminal window. The window will collect debugging output from the application
while the BWindowScreen runs in a different workspace, generally the one at the immediately preceding index. For example, if the
Terminal window is in the fifth workspace (Command−F5), the game will run in the fourth (Command−F4); if the Terminal is in the fourth
(CommandF4), the game runs in the third (Command−F3); and so on. However, if the Terminal window is in the first workspace
(Command−F1), the game runs in the second (Command−F2).

The Terminal window is the destination for all messages the game writes to the standard error stream or to the standard outputfrom printf(), for
example. You can switch back and forth between the game and Terminal workspaces to check the messages and run your application. When you
switch from the game workspace to the Terminal workspace, all registered threads are suspended and the graphics context is saved. When you switch
back to the game, the graphics context is restored and the threads are resumed.

Calling Suspend() switches to the Terminal workspace programmatically, just as pressing the correct Commandfunction key combination would.
Registered threads are suspended, the Terminal workspace is activated, and the label passed as an argument is displayed in a message in the Terminal
window. You can resume the game by manually switching back to its workspace.

SuspensionHook() is called whenever the game is suspended or resumedwhether by the user switching workspaces or by Suspend(). It gives
you an opportunity to save and restore any state that would otherwise be lost. SuspensionHook() is called with a suspended flag of true just
after the application is suspended and with a flag of false just before it's about to be resumed.

ScreenConnected() is not called when you switch between the Terminal and game workspaces while in debugging mode. However, it is called
for all normal game activitieswhen the BWindowScreen is first activated and when it hides or quits, for example.

Debugging mode can also preserve some information in case of a crash. Hold down all the left modifier keys (Shift, Control, Option, Command, Alt,
or whatever the keys may happen to be on your keyboard), and press the F12 key. This restarts the screen with a 640 * 480 resolution and displays a
debugger window. You should then be able to switch to the Terminal workspace to check the last set of messages before the crash, modify your code,
and start again.

 ScreenChanged()

virtual void ScreenChanged(BRect frame, color_space mode)

Overrides the BWindow version of ScreenChanged() so that it does nothing. This function is called automatically when the screen configuration
changes. It's not one that you should call in application code or reimplement for the game.

See also: BWindow::ScreenChanged()

 ScreenConnected()

virtual void ScreenConnected(bool connected)

Implemented by derived classes to take action when the application gains direct access to the screen and when it's about to lose that access.

This function is called with the connected flag set to true immediately after the BWindowScreen object becomes the active window and establishes
a direct connection to the graphics card driver for the screen. At that time, the Application Server's connection to the screen is suspended; drawing can
only be accomplished through the screen access that the BWindowScreen object provides.

ScreenConnected() is called with a flag of false just before the BWindowScreen object is scheduled to lose its control over the screen and the
Application Server's control is reasserted. The BWindowScreen's connection to the screen will not be broken until this function returns. It should delay
returning until the application has finished all current drawing and no longer needs direct screen access.

Note that whenever ScreenConnected() is called, the BWindowScreen object is guaranteed to be connected to the screen; if connected is true,
it just became connected, if connected is false, it's still connected but will be disconnected when the function returns.

Derived classes typically use this function to regulate access to the screen. For example, they may acquire a semaphore when the connected flag is
false, so that application threads won't attempt direct drawing when the connection isn't in place, and release the semaphore for drawing threads to
acquire when the flag is true. For example:

 void MyWindowScreen::ScreenConnected(bool connected)
 {
 if (connected == false)
 acquire_sem(directDrawingSemaphore);
 else
 release_sem(directDrawingSemaphore);

 BWindowScreen

31

#thread_id
#resume_thread()
#BRect
#BWindow

 }

See also: Disconnect()

 SetColorList() , ColorList()

void SetColorList(rgb_color *colors, int32 first = 0, int32 last = 255)

rgb_color *ColorList(void)

These functions set and return the list of 256 colors that can be displayed when the frame buffer has a depth of 8 bits per pixel (the B_CMAP8 color
space). SetColorList() is passed an array of one or more colors to replace the colors currently in the list. The first color in the array replaces the
color in the list at the specified first index; all colors up through the last specified index are modified. It fails if either index is out of range.

SetColorList() alters the list of colors kept on the graphics card. If the BWindowScreen isn't connected to the screen, the new list takes effect
when it becomes connected.

ColorList() returns a pointer to the entire list of 256 colors. This is not the list kept by the graphics card driver, but a local copy. It belongs to the
BWindowScreen object and should be altered only by calling SetColorList().

See also: BScreen::ColorMap() in the Interface Kit

 SetFrameBuffer()

status_t SetFrameBuffer(int32 width, int32 height)

Configures the frame buffer on the graphics card so that it's width pixel columns wide and height pixel rows high. This function works only if the
driver for the graphics card allows custom configurations (as reported by CanControlFrameBuffer()) and the BWindowScreen object is
currently connected to the screen.

The new dimensions of the frame buffer must be large enough to hold all the pixels displayed on−screenthat is, they must be at least as large as the
dimensions of the display area. If the driver can't accommodate the proposed width and height, SetFrameBuffer() returns B_ERROR. If the
change is made, it returns B_OK.

This function doesn't alter the depth of the frame buffer or the size or location of the display area.

See also: MoveDisplayArea() , SetSpace()

 SetSpace()

status_t SetSpace(uint32 space)

Configures the screen space to one of the standard combinations of width, height, and depth. The configuration is first set by the class
constructorpermitted space constants are documented thereand it may be altered after construction only by this function.

Setting the screen space sets the dimensions of the frame buffer and display area. For example, if space is B_32_BIT_800x600, the frame buffer
will be 32 bits deep and at least 800 pixel columns wide and 600 pixel rows high. The display area (the area of the frame buffer mapped to the screen)
will also be 800 pixels * 600 pixels. After setting the screen space, you can enlarge the frame buffer by calling SetFrameBuffer() and relocate
the display area in the larger buffer by calling MoveDisplayArea().

If the requested configuration is refused by the graphics card driver, SetSpace() returns B_ERROR. If all goes well, it returns B_OK.

See also: the BWindowScreen constructor, SetFrameBuffer() , MoveDisplayArea()

Suspend() see RegisterThread()

SuspensionHook() see RegisterThread()

 WindowActivated()

virtual void WindowActivated(bool active)

 BWindowScreen

32

#B_CMAP8
#ColorMap()
#B_ERROR
#B_OK
#B_ERROR
#B_OK
#the%20BWindowScreen%20constructor
#the%20BWindowScreen%20constructor

Overrides the BWindow version of WindowActivated() to connect the BWindowScreen object to the screen (give it control over the graphics
card driver) when the active flag is true.

This function doesn't disconnect the BWindowScreen when the flag is false, because there's no way for the window to cease being the active
window without the connection already having been lost.

Don't reimplement this function in your application, even if you call the inherited version; rely instead on ScreenConnected() for accurate
notifications of when the BWindowScreen gains and loses control of the screen.

See also: BWindow::WindowActivated() , ScreenConnected()

 WorkspaceActivated()

virtual void WorkspaceActivated(int32 workspace, bool active)

Overrides the BWindow version of WorkspaceActivated() to connect the BWindowScreen object to the screen when the active flag is
true and to disconnect it when the flag is false. User's typically activate the game by activating the workspace in which it's running, and deactivate
it by moving to another workspace.

Don't override this function in your application; implement ScreenConnected() instead.

See also: BWindow::WorkspaceActivated() , ScreenConnected()

 BWindowScreen

33

#BWindow
#BWindow

 Global Functions, Constants, and Defined Types
Library: libgame.so

The Game Kit has just one global function, set_mouse_position(). It should be called only by an application that has control of the screen
through a BWindowScreen object. Otherwise, the kit borrows constants and types defined for graphics card drivers and by other parts of the BeOS.
Those that are not documented for the Interface and Support Kits are listed here.

 Global Functions

 set_mouse_position()

Declared in: <game/WindowScreen.h>

void set_mouse_position(int32 x, int32 y)

Moves the cursor hot spot to (x, y) in the screen coordinate system, where x is a left−to−right index to a pixel column and y is a top−to−bottom index
to a pixel row. The origin of the coordinate system is the left top pixel of the display area of the main screen.

This function should be called only while the application has a direct connection to the frame buffer through a BWindowScreen object.

 Constants

 Control Flags

Declared in: <add−ons/graphics/GraphicsCard.h>

 B_GAMMA_CONTROL

 B_FRAME_BUFFER_CONTROL

These flags report the driver's ability to control the CRT display, make gamma corrections, and permit nonstandard configurations of the frame buffer.
Only the last has any meaning for the Game Kit.

See also: CardInfo()

 gs_attributes

Declared in: <game/GameSoundDefs.h>

 B_GS_MAIN_GAIN Main gain control, in decibels. The main gain doesn't support ramping.

 B_GS_CD_THROUGH_GAIN Gain on the CD through, in decibels.

 B_GS_GAIN Gain on the sound, in decibels.

 B_GS_PAN Pan position of the sound. −1.0 for far left, 0 for middle, 1.0 for far right.

 B_GS_SAMPLING_RATE Sampling rate in hertz.

 B_GS_LOOPING If the attribute's value is nonzero, the sound automatically loops. If it's 0, the sound plays through just
once.

 B_GS_FIRST_PRIVATE_ATTRIBU
TE Beginning of private attribute range

 B_GS_FIRST_USER_ATTRIBUTE Beginning of user attribute range.

These are the various possible game sound attributes. The range between B_GS_FIRST_PRIVATE_ATTRIBUTE and
B_GS_FIRST_USER_ATTRIBUTE are reserved; if you need custom attributes, use values B_GS_FIRST_USER_ATTRIBUTE and higher.

34

WindowScreen.h>
GraphicsCard.h>
GameSoundDefs.h>

 Defined Types

 frame_buffer_info

Declared in: <add−ons/graphics/GraphicsCard.h>

typedef struct {
 short bits_per_pixel ;
 short bytes_per_row ;
 short width ;
 short height ;
 short display_width ;
 short display_height ;
 short display_x ;
 short display_y ;
 } frame_buffer_info

This structure is used to report the current configuration of the frame buffer.

See also: FrameBufferInfo()

 graphics_card_hook

Declared in: <add−ons/graphics/GraphicsCard.h>

typedef void (*graphics_card_hook)(void)

This is the general type declaration for a graphics card hook function. Specific hook functions will in fact declare various sets of arguments and all
return a status_t error code rather than void.

See also: CardHookAt() , "Graphics Card Hook Functions" on page18

 graphics_card_info

Declared in: <add−ons/graphics/GraphicsCard.h>

typedef struct {
 short version;
 short id;
 void *frame_buffer;
 char rgba_order[4];
 short flags;
 short bits_per_pixel;
 short bytes_per_row;
 short width;
 short height;
 } graphics_card_info

Drivers use this structure to supply information about themselves and the current configuration of the frame buffer to the Application Server and the
BWindowScreen class.

See also: CardInfo()

 gs_attribute

Declared in: <game/GameSoundDefs.h>

struct gs_attribute {
 int32 attribute;
 bigtime_t duration;

 Global Functions, Constants, and Defined Types

35

GraphicsCard.h>
GraphicsCard.h>
#status_t
#Graphics%20Card%20Hook%20Functions%20on%20page18
GraphicsCard.h>
GameSoundDefs.h>

 float value;
 uint32 flags;
 };

Defines an attribute. An attribute consists of an attribute number from gs_attributes, a duration indicating the period of time, in
microseconds, over which the attribute's change takes effect, and a target value. Additional flags can be specified for the attribute as well; these
vary depending on the attribute.

Currently, there are no flags defined for any of the predefined attributes.

 gs_attribute_info

Declared in: <game/GameSoundDefs.h>

struct gs_attribute_info {
 int32 attribute ;
 float granularity ;
 float minimum ;
 float maximum ;
 };

Describes the possible values the attribute can take. The granularity field indicates how finely the value of the attribute can be controlled,
and minimum and maximum specify the minimum and maximum values the attribute can take on.

 gs_audio_format

Declared in: <game/GameSoundDefs.h>

struct gs_audio_format {
 enum format {

B_GS_U8 = 0x11,
B_GS_S16 = 0x2,
B_GS_F = 0x24,
B_GS_S32 = 0x4

 };
 float frame_rate;
 uint32 channel_count;
 uint32 format;
 uint32 byte_order;
 size_t buffer_size;
 };

This structure describes the format of a game sound. The format enum lists the possible sound sample formats supported by the Game Kit:

 B_GS_U8 Unsigned 8−bit integer.

 B_GS_S16 Signed 16−bit integer.

 B_GS_F Floating−point.

 B_GS_S32 Signed 32−bit integer.

• The frame_rate indicates how many frames per second of audio should be played.

• The channel_count field indicates the number of audio channels the sound uses.

• The format field, which specifies the format of the audio data to be played must be one of the values declared in the format enum.

• The byte_order field specifies the byte order of the sound to be played.

• The buffer_size is used to specify how large the audio buffers used to play the sound should be. You can specify zero if you want the
Game Kit to determine an appropriate size for you.

 Global Functions, Constants, and Defined Types

36

GameSoundDefs.h>
GameSoundDefs.h>

 gs_id

Declared in: <game/GameSoundDefs.h>

typedef int32 gs_id;

This type is used for game sound ID numbers.

 Global Functions, Constants, and Defined Types

37

GameSoundDefs.h>

The Game Kit: Master Index

_

_dd_type_ BDirectWindow

_reserved BDirectWindow

A

B

bits_per_pixel BDirectWindow

bits_per_pixel Global Functions, Constants, and Defined Types

buffer_size Global Functions, Constants, and Defined Types

buffer_state BDirectWindow

byte_order Global Functions, Constants, and Defined Types

bytes_per_row BDirectWindow

bytes_per_row Global Functions, Constants, and Defined Types

C

CardHookAt() BWindowScreen

CardInfo() BWindowScreen

channel_count Global Functions, Constants, and Defined Types

Choosing a Player Class BGameSound

clip_bounds BDirectWindow

clip_list BDirectWindow

clip_list_count BDirectWindow

Clone() BGameSound

ColorList() BWindowScreen

Constants BPushGameSound

Constants Global Functions, Constants, and Defined Types

Constructor and Destructor BDirectWindow

Constructor and Destructor BFileGameSound

Constructor and Destructor BGameSound

38

Constructor and Destructor BPushGameSound

Constructor and Destructor BSimpleGameSound

Constructor and Destructor BStreamingGameSound

Constructor and Destructor BWindowScreen

Control Flags Global Functions, Constants, and Defined Types

B_CRT_CONTROL Global Functions, Constants, and Defined Types

CurrentPosition() BPushGameSound

D

Defined Types Global Functions, Constants, and Defined Types

Device() BGameSound

DirectConnected() BDirectWindow

BDirectWindow BDirectWindow

BDirectWindow() BDirectWindow

~BDirectWindow() BDirectWindow

direct_buffer_info BDirectWindow

Disconnect() BWindowScreen

display_height Global Functions, Constants, and Defined Types

display_width Global Functions, Constants, and Defined Types

display_x Global Functions, Constants, and Defined Types

display_y Global Functions, Constants, and Defined Types

driver_state BDirectWindow

E

F

BFileGameSound BFileGameSound

BFileGameSound() BFileGameSound

~BFileGameSound BFileGameSound

FillBuffer() BStreamingGameSound

Format() BGameSound

The Game Kit: Master Index

39

#B_CRT_CONTROL

format Global Functions, Constants, and Defined Types

FrameBufferInfo() BWindowScreen

B_FRAME_BUFFER_CONTROL Global Functions, Constants, and Defined Types

frame_buffer_info Global Functions, Constants, and Defined Types

frame_buffer_info Global Functions, Constants, and Defined Types

frame_rate Global Functions, Constants, and Defined Types

G

The Game Kit The Game Kit

The Game Kit The Game Kit

BGameSound BGameSound

BGameSound() BGameSound

~BGameSound BGameSound

B_GAMMA_CONTROL Global Functions, Constants, and Defined Types

GetAttributes() BGameSound

GetClippingRegion() BDirectWindow

Getting Connected (and Staying That Way) BDirectWindow

Getting Connected (and Staying That Way) BDirectWindow

Global Functions Global Functions, Constants, and Defined Types

Global Functions, Constants, and Defined TypesGlobal Functions, Constants, and Defined Types

Global Functions, Constants, and Defined TypesGlobal Functions, Constants, and Defined Types

granularity Global Functions, Constants, and Defined Types

graphics_card_hook Global Functions, Constants, and Defined Types

graphics_card_info Global Functions, Constants, and Defined Types

gs_attribute Global Functions, Constants, and Defined Types

gs_attribute_info Global Functions, Constants, and Defined Types

gs_attribute_info Global Functions, Constants, and Defined Types

gs_attributes Global Functions, Constants, and Defined Types

gs_audio_format Global Functions, Constants, and Defined Types

B_GS_CD_THROUGH_GAIN Global Functions, Constants, and Defined Types

The Game Kit: Master Index

40

B_GS_F Global Functions, Constants, and Defined Types

B_GS_FIRST_PRIVATE_ATTRIBU Global Functions, Constants, and Defined Types

B_GS_FIRST_USER_ATTRIBUTE Global Functions, Constants, and Defined Types

B_GS_GAIN Global Functions, Constants, and Defined Types

gs_id Global Functions, Constants, and Defined Types

B_GS_LOOPING Global Functions, Constants, and Defined Types

B_GS_MAIN_GAIN Global Functions, Constants, and Defined Types

B_GS_PAN Global Functions, Constants, and Defined Types

B_GS_S16 Global Functions, Constants, and Defined Types

B_GS_S32 Global Functions, Constants, and Defined Types

B_GS_SAMPLING_RATE Global Functions, Constants, and Defined Types

B_GS_U8 Global Functions, Constants, and Defined Types

H

Hide() BWindowScreen

High−Performance Audio The Game Kit

Hook Functions BDirectWindow

Hook Functions BWindowScreen

How It Works BPushGameSound

I

IOBase() BWindowScreen

Init() BGameSound

InitCheck() BFileGameSound

InitCheck() BGameSound

InitCheck() BPushGameSound

InitCheck() BSimpleGameSound

InitCheck() BStreamingGameSound

IsFullScreen() BDirectWindow

IsLooping() BSimpleGameSound

IsPaused() BFileGameSound

The Game Kit: Master Index

41

IsPlaying() BGameSound

K

L

Lock() BStreamingGameSound

LockForCyclic() BPushGameSound

LockMemoryPool() BGameSound

LockNextPage() BPushGameSound

lock_status BPushGameSound

Low−Level Graphics Access The Game Kit

M

Member Functions BDirectWindow

Member Functions BFileGameSound

Member Functions BGameSound

Member Functions BPushGameSound

Member Functions BSimpleGameSound

Member Functions BStreamingGameSound

Member Functions BWindowScreen

minimum Global Functions, Constants, and Defined Types

MoveDisplayArea() BWindowScreen

N

O

P

pci_bits BDirectWindow

Performance Verification BGameSound

pixel_format BDirectWindow

Polyphony BGameSound

The Game Kit: Master Index

42

Preload() BFileGameSound

BPushGameSound BPushGameSound

BPushGameSound() BPushGameSound

~BPushGameSound BPushGameSound

Q

R

S

ScreenChanged() BWindowScreen

ScreenConnected() BWindowScreen

SetAttributes() BGameSound

SetAttributes() BStreamingGameSound

SetColorList() BWindowScreen

SetFrameBuffer() BWindowScreen

SetFullScreen() BDirectWindow

SetGain() BGameSound

SetInitError() BGameSound

SetIsLooping() BSimpleGameSound

SetMaxSoundCount() BGameSound

SetMemoryPoolSize() BGameSound

SetPan() BGameSound

SetParameters() BStreamingGameSound

SetPaused() BFileGameSound

SetSpace() BWindowScreen

SetStreamHook() BStreamingGameSound

set_mouse_position() Global Functions, Constants, and Defined Types

Show() BWindowScreen

BSimpleGameSound BSimpleGameSound

BSimpleGameSound() BSimpleGameSound

The Game Kit: Master Index

43

~BSimpleGameSound BSimpleGameSound

The Sound of Explosions in the Morning BGameSound

StartPlaying() BGameSound

StopPlaying() BGameSound

BStreamingGameSound BStreamingGameSound

BStreamingGameSound() BStreamingGameSound

~BStreamingGameSound BStreamingGameSound

SupportsWindowMode() BDirectWindow

Suspend() BWindowScreen

SuspensionHook() BWindowScreen

U

UnlockCyclic() BPushGameSound

UnlockPage() BPushGameSound

Using a Direct Window BDirectWindow

Using a Direct Window BDirectWindow

W

WindowActivated() BWindowScreen

Window Mode vs. Full Screen Mode BDirectWindow

Window Mode vs. Full Screen Mode BDirectWindow

BWindowScreen BWindowScreen

BWindowScreen() BWindowScreen

~BWindowScreen() BWindowScreen

window_bounds BDirectWindow

WorkspaceActivated() BWindowScreen

Workspaces BWindowScreen

The Game Kit: Master Index

44

	The Device Kit - Table of Contents
	 The Game Kit
	 BDirectWindow
	 BFileGameSound
	 BGameSound
	 BPushGameSound
	 BSimpleGameSound
	 BStreamingGameSound
	 BWindowScreen
	 Global Functions, Constants, and Defined Types
	The Game Kit: Master Index

