
 Drag and Drop

The Device Kit − Table of Contents

 Drag and Drop..1

i

 Drag and Drop
This is the reference document for constructing BMessage objects as used in BeOS' standard negotiated drag'n'drop actions. If you're reading it for the
first time, you should probably read the entire thing. If you want to look up something and you're reading this with a browser, you can jump to any of
the following:

1. Simple vs. Negotiated Drag'n'Drop

2. Basics of Drag and Drop

3. BMessage Formats in Negotiated Drag'n'Drop

3a. Protocol for the drag message

3b. Protocol for the Negotiation Message

3c. Protocol for the Data Message

4. Summary of the Negotiated Drag'n'Drop Protocol

 Prerequisites
Drag and Drop makes use of a number of elements of the BeOS programming kit, and you'll need to be at least reasonably familiar with the following
topics, in order to be comfortable reading this document:

• The BMessage class, since dragged objects are sent to their targets as BMessage objects. You should understand what a BMessage is,
how to add data to a BMessage or extract data from it, how to send a BMessage, and where to put code to handle incoming
BMessages.

• The BView class. The drag and drop action is fundamentally a GUI operation, and BView objects are the most important objects in
handling GUI events; subclasses of BView are where you will most often define code to both initiate a drag, and handle a drop.

• The Translation Kit, if you wish to make use of the BeOS' built−in translation abilities to (for example) drag a JPEG image from an
application, to another application that only understands raw bitmaps.

 Simple vs. Negotiated Drag'n'Drop
Roughly speaking, you can do two different kinds of drag and drop operations; both appear the same to the user, but they differ in the complexity of
the background communication between the source of the drag, and the drop target.

 Simple Drag'n'Drop

A simple drag'n'drop is one where the action of dragging and dropping corresponds internally to a single BMessage being sent, from the origin of the
drag to the drop target. This was the original drag'n'drop protocol for the BeOS, and is still highly useful in dragging and dropping which takes place
within a single application, or within a tightly coupled set of applications which "know about" one another. For example, you could drag around
drawing elements of a drawing program using this protocol; each drag operation would result in the drawing application sending a BMessage within
itself, and that BMessage would contain the data necessary to indicate which drawing element had been moved, and to where. Using the built in
drag'n'drop abilities of the BeOS in this manner will lessen your own workload, since many of the most basic aspects, such as visually dragging a
bitmap around on the screen, are handled automatically.

 Negotiated Drag'n'Drop

A negotiated drag and drop is used in a more general context, when the originator of a drag and the receiver (drop target) of that drag do not
necessarily know anything about one another. This more general drag'n'drop is necessary if we wish to make usage of the BeOS, particularly it's
media−related applications, as intuitive to the user as possible. For example, the user should expect to be able to drag an image from one graphics
program (say a viewer) to another graphics program (such as a paint program) with no difficulty. However, there are many different underlying data
formats for representing images, and the two graphics programs will have to negotiate (with the aid of the Translation kit) for the most suitable or
desirable format.

Note that the negotiated drag'n'drop protocol is not a "hard and fast" requirement; it is not enforced by the system, and could easily be modified; for
example, you might need a particularly complex negotiation that takes more steps than defined in the standard. The major user of negotiated
drag'n'drop you are likely to encounter right now is in Tracker, and we will talk about that in more detail later. Other applications may support
negotiated drag'n'drop or may not. Also note that a simpler protocol was originally defined, and may still be used by older applications. It's easy to
make your code handle this older protocol; see the later section on "Handling the Old Drag'n'Drop Protocol".

 Basics of Drag and Drop
Let's assume the user is working with two applications, and is going to drag something from the first application (which we'll call the sender
application) to the second application (which we'll call the receiver application.) In a nutshell, here are the steps that make up this entire process:

1. Detection: Code in a BView object of the sender application notices that the user has clicked on something of interest, and started dragging it.
The monitoring code that notices this is usually spread out between the BView::MouseDown() and BView::MouseMoved() functions, and
typically has to differentiate between the start of a real drag and drop, or a click that might (for example) select an object without dragging it, but that
moves just one or two pixels because the user has a slightly jittery hand. The drag detection code will typically have to use

1

#36645: head1: Simple vs. Negotiated Drag'n'Drop
#39457: head1: Basics of Drag and Drop
#23388: head1: BMessage Formats in Negotiated Drag'n'Drop
#21113: head2: Protocol for the drag message
#40424: head2: Protocol for the Negotiation Message
#39988: head2: Protocol for the Data Message
#14568: head1: Summary of the Negotiated Drag'n'Drop Protocol

BView::SetMouseEventMask() to temporarily enable full reporting of mouse movement (which is not normally reported to the application, for
efficiency reasons).

2. Initiation: Once the sender application's detection code has decided a drag and drop action has been started, it initiates the drag and drop
internally, by creating a BMessage object containing information about the nature of the object being dragged, and then passing that BMessage to
the BView::DragMessage() function. BView::DragMessage() also determines how the object being dragged appears visually to the user;
you can pass it a BBitmap, in which case it will drag a cool picture around the screen, or you can pass it a BRect, in which case it will drag a boring
old rectangular outline. After calling DragMessage, the sender's code should remember to delete its own copy of the BMessage. Note: The sender
should not delete the BBitmap it passes to DragMessage; this will be done by the system

3. Drag: This is the easy part; once the sender application has initiated the drag, as described in the previous step, dragging a visual representation
around the screen is handled by the system. The next time application code is invoked is on the . . .

4. Drop: The user releases the mouse button while the mouse is in a BView of the receiver application. This causes the
MessageReceived() function of the recipient BView to be invoked, with the dragged BMessage as its received message. This is the first of
three BMessage objects that can be sent as part of a single drag and drop action. We'll call this first message the drag message. In a simple
drag'n'drop, the drag message can contain just about anything you want it to; since both the sender and the receiver "know about" one another, they
presumably have a common private protocol, and the receiver can analyze the message and do whatever is required. In a negotiated drag'n'drop, the
drag message does not typically carry the data that defines the object being dropped; for example, if you drop a block of text, the message that is
dropped normally does not contain the text that was dragged. Instead, the drag message contains information about the different formats and methods
by which the sender application may supply the data to the receiver application, and about which actions the receiver application can request of the
sender application.

5. Negotiation [optional, used in negotiated drag'n'drop]: The receiver application replies to the drag message with a second message, which is
dispatched back to the sender application using the BMessage::SendReply() function. We'll call this second message the negotiation message.
The receiver creates the negotiation message by looking through the options supplied by the sender in the drag message, choosing one or more, and
including those option in the message so that the sender will know which of its possible replies is actually desired. The negotiation message also
contains information about what the receiver would like the sender to do with the dragged data; for example, if you drag a file to the Trash, the
negotiation message sent back "from" the Trash will include a request that the sender delete the dragged data.

6. Data Transmission [optional, used in negotiated drag'n'drop]: The sender examines the negotiation message sent back to it by the receiver, to
find out which available data format the receiver wants the data in. The sender then packages up the data, and dispatches it off to the receiver in the
data message. (Optionally, the sender can, at the request of the receiver, create a file through which it passes the data to the receiver, rather than
passing the data directly in the BMessage. We'll talk about this when we discuss the details of the drop, negotiation, and data messages.)

7. Completion [optional, used in negotiated drag'n'drop]: The receiver gets the data message from the sender, extracts the desired data, and uses it
in whatever way it wants.

This sounds more complex than it is. A picture is worth a thousand words, so here is a simplified schematic of the process:

 Drag and Drop

2

 Drag and Drop

3

 Example: Simple Drag'n'Drop
Before going on to more complex matters, let's see just how simple "simple" drag'n'drop can be. The code below defines a very simple application,
which lets one drag around a black square in a window. The application is both the sender (i.e., you click on the square in the application window to
start the drag), and the receiver (you release the mouse button within the application window, to reposition the square). Most of the program code is
"boilerplate", similar to what would be found in any application involving a BView. Those parts of the code pertaining specifically to the drag and
drop are given in bold.

 /* Drag the black square around using drag'n'drop−−a very
 simple−minded program. The DETECTION, INITIATIOIN, DRAG,
 and DROP steps correspond to those of the same name given
 in the overview section, "Basics of Drag and Drop". */

 #include <Application.h>
 #include <InterfaceKit.h>

 rgb_color black = {0, 0, 0, 64};
 const char *APP_SIGNATURE = "application/x−vnd.Be−MyDragnDrop";
 /* The constant below is arbitrary−−the fact that is is 'drag' is
 meaningless. However, it MUST be chosen so as not to conflict
 with system−wide BMessage 'what' values−−see the BMessage
 documentation for details. */

const uint32 MY_DRAG_ACTION = 'drag';

 class MyDragDropView : public BView {
 private:
 BPoint _button_click;
 BRect _SquareSides;

 public:
 MyDragDropView(BRect rect) : BView(rect, "",
 B_FOLLOW_ALL_SIDES, B_WILL_DRAW) {
 _SquareSides = BRect(20, 20, 90, 90);
 }

 void Draw(BRect where) {
 SetHighColor(black);
 FillRect(_SquareSides);
 }

 void MouseDown(BPoint where) {
 /* 1. DETECTION : Our detection code is pretty simple−minded;
 if the user clicks in the black square, they're starting a drag. */
 if (_SquareSides.Contains(where)) {
 // Turn on the event mask for all pointer events, so we'll know when
 // the user lets go of the mouse button.
 SetMouseEventMask(B_POINTER_EVENTS, 0);

 /* 2. INITIATION : Create a BMessage instance, and pass it
 to BView::DragMessage() to start the drag. */
 BMessage *drag_message = new BMessage(MY_DRAG_ACTION);
 /* Remember, in the drag message, where the drag started */
 drag_message−>AddPoint("click_location", where);
 DragMessage(drag_message, _SquareSides, this);
 /* 3. DRAG : this is handled by the user and system, we
 don't write any code at all to do the dragging. The
 next step will take place in the MessageReceived() function. */

 /* DON'T FORGET TO DELETE THE MESSAGE AFTER YOU'RE DONE*/
 delete drag_message;
 }

 }; /* end of MouseDown() */

 void MessageReceived(BMessage *msg) {
 /* 4. DROP : MessageReceived() can called for many different
 messages. We're only interested in ones with a 'what'
 field of MY_DRAG_ACTION, as was created in the MouseDown()
 function. */
 if (msg−>what == MY_DRAG_ACTION) {
 BPoint clicked;
 /* We put "click_location" into the original message, now
 we can get it out */
 msg−>FindPoint("click_location", &clicked);
 BPoint whereto;
 /* The "_drop_point_" message field is automatically
 inserted by the OS; is is the screen point the
 mouse was on when the drag ended. */
 msg−>FindPoint("_drop_point_", &whereto);
 /* Convert "_drop_point_" to view coordinates. */
 whereto = ConvertFromScreen(whereto);
 /* Move the square by the same amount the mouse moved
 in the drag. */
 _SquareSides.OffsetBy(whereto−clicked);
 /* Ensure the view is redrawn */
 Invalidate();
 }

 }; /* end of MessageReceived() */
 }; /* end of MyDragDropView class */

 class MyDragDropWindow : public BWindow {
 public:
 MyDragDropWindow(BRect frame)
 : BWindow(frame, "Drag'n'Drop Example", B_TITLED_WINDOW, B_NOT_ZOOMABLE) {

 interior = new MyDragDropView(this−>Bounds());
 AddChild(interior);
 Show();
 }

 Drag and Drop

4

 bool QuitRequested() {
 be_app−>PostMessage(B_QUIT_REQUESTED);
 return true;
 }
 private:
 BView *interior;
 }; /* end of MyDragDropWindow class */

 class MyDragDropApp : public BApplication {
 public:
 MyDragDropApp::MyDragDropApp() : BApplication(APP_SIGNATURE) {
 BRect windowRect;
 windowRect.Set(50,50,349,399);
 new MyDragDropWindow(windowRect);
 }
 private:
 MyDragDropWindow *theWindow;
 }; /* end of MyDragDropApp class */

 /* The "main" function creates and runs the application.*/
 int main(void) {
 MyDragDropApp *theApp;
 theApp = new(MyDragDropApp);
 theApp−>Run();
 delete theApp;
 }

 BMessage Formats in Negotiated Drag'n'Drop
With simple drag and drop, you are free to use BMessages more or less as you wish; you simply define a what member constant which will uniquely
identify your dropped message to the target, and put whatever data you wish into the body of the message. The receiver will examine the
what member of the message and, assuming it understands it at all, should then know how to extract the data (if any) in the body of the message.

Negotiated drag and drop is different, since it assumes that the sender and receiver have no implicit knowledge of each other. In order for the two ends
of the action to communicate effectively, they must agree on a standard protocol between them. This protocol takes the form of an agreed−up structure
for each of the drag message, negotiation message, and data message, as described in the following sections.

Hint: There's a great little utility called ViewIt, which should be available (as part of a package of utilities called Geb's Goodies) on the usual
download sites, such as www.bebits.com. You can drag anything onto ViewIt, and it will display the contents of the drag message.

 Protocol for the Drag Message

The drag message is the one initially sent out by the sender application. It must be assigned a what member of B_SIMPLE_DATA by you, the
programmer. The message fields in the drag message can be split into those that are provided by you, and those that are filled in automatically by the
system. Let's take a look at each of these.

 Drag Message Fields Filled In by Your Code

The following drag message fields will need to be filled in by your code. Detailed descriptions of these fields are found below.

"be:types", "be:filetypes", and "be:type_descriptions": These fields indicates the formats the sender is willing to provide data in, and are filled in
together.

"be:actions": A list of actions the sender is willing to perform on its data, at the request of the receiver.

"be:clip_name": A suggested name for the data being sent, which may be used at the option of the receiver. This field is optional.

"be:originator", "be:originator_data": used to preserve context information across asynchronous message sendings.

"be:data": This was used by the old [obsolete] drag'n'drop protocol, to contain the data being dragged. You don't need to use it with modern
applications.

 Drag Message Fields Filled In by the System

"_drop_point_", "_drop_offset_": The values in these fields are set automatically by the system; do not set them yourself. They give information
about where the drop took place on the screen.

 Detailed Description of the Drag Message Fields

 "be:types", "be:filetypes", and "be:type_descriptions" Fields

The main purpose of negotiated drag'n'drop is to come up with an optimal compromise between the data formats the sender application can provide
something in, and the data formats the receiver can accept that data in. Accordingly, the three most important message fields in the drag message are
the "be:types" and "be:filetypes" fields; "be:type_descriptions" accompanies the "be:filetypes" field, so we'll describe it here also.. Each of these
fields is filled with a list of string values.

Values for these fields will typically be obtained from the Translation Kit, by asking the Translation Kit which data formats it can provide the dragged
data in, and filling the fields in with the information returned by the calls to the Translation Kit. (For example, if appropriate translators are installed on
the system, the Translation Kit might be able to translate a bitmap into any of JPEG, GIF, PNG, or TIFF images.)

The specific meanings of these three fields are as follows:

• "be:types": each value in this field indicates a data format the sender is willing to provide its sent data in. This is a string value (a MIME

 Drag and Drop

5

string, actually), but you won't normally need to know what the string actually is, since you'll obtain it from the Translation Kit, or from a
predefined constant. If "be:types" consists of a single element whose value is equal to that in the global variable B_FILE_MIME_TYPE,
then the sender application is not willing to provide its data in a BMessage; the receiver must accept the data through a file, in one of the
formats specified in the "be:filetypes" field of this message. If you want to indicate that your application is willing to send its data via either
of a BMessage or a file, then add B_FILE_MIME_TYPE as the last element of "be:types", after all of the types which can be sent in a
BMessage.

• "be:filetypes": similar "be:types", but a values in this field indicate formats in which the sender is willing to provide its data via a file. This
can make a lot of sense; for example, if what the user is dragging around is a 30 megabyte video clip, you probably don't want to pass this
in a BMessage. In most cases, "be:filetypes" will be identical to "be:types". If your application isn't willing to pass data via a file, then it
doesn't matter what (if anything) you put into "be:filetypes". Important: See the section below in "Passing Data Via a File" for further
notes on this, if you plan to make use of it.

• "be:type_descriptions": this is just a user−friendly description of the corresponding format in "be:filetypes". It may be displayed onscreen
to the user when the user can choose between several different data formats during a file save operation. It is not used otherwise.

 The "be:actions" Field

In negotiated drag'n'drop, the sender and receiver negotiate not only the format of the sent data, but also the action performed on that data. Should the
data be copied from the sender to the receiver, moved from the sender to the receiver, or something else? The first part of this "actions negotiation"
takes place in the drag message via the "be:actions" field.

"be:actions" contains a list of values (32−bit integers actually) which define the actions the sender is will to perform at the request of the receiver. No
action will actually be carried out until and unless the receiver requests it. The possible action requests are given by the following constants:

• B_COPY_TARGET : the sender is willing to provide a copy of the dragged object.

• B_MOVE_TARGET : The sender is willing to move the target over to the receiver; if the receiver requests this, then after the sender sends
a copy of the data, it will delete its own copy.

• B_LINK_TARGET : The sender is willing to provide a link to the target. [xxx what does this mean exactly? If the sender is the Tracker, I
can understand it, but in Chris' document, B_LINK_TARGET is listed as a general action, not one that is Tracker−specific.]

• B_TRASH_TARGET : The sender is willing to delete its data without even sending it. This is useful if, for example, you want your user
to be able to drag something from the application to the Tracker's wastebasket icon, and have the object removed from the application as a
result.

In addition to the above four "standard" actions, there are a few actions which can be carried out specifically when the Tracker is the sender application
[xxx does the Tracker have to be the receiver as well? If so, should we even document these actions?]:

• B_COPY_SELECTION_TO : One or more elements (files, directories) are selected in a Tracker window; the Tracker is willing to copy
these files to an entry_ref type destination, which will be supplied in a "refs" field in the negotiation message, should the receiver
application choose this action.

• B_MOVE_SELECTION_TO : One or more elements (files, directories) are selected in a Tracker window; the Tracker is willing to move
these files to an entry_ref type destination, which will be supplied in a "refs" field in the negotiation message, should the receiver
application choose this action.

[xxx Chris' document implies the Tracker can also make links due to a specific Tracker action, is there something like a B_LINK_SELECTION_TO?]

 The "be:clip_name" Field

This is an easy one. If present (it doesn't have to be), it contains a string suggesting a name for the data which will be sent. This name may be used by
the receiver; for example, if data is dragged onto the Tracker, the Tracker will try to use the value in "be:clip_name" as the basis for the name of the
clipping file it creates from the data. However, the receiver is under no obligation to pay attention to "be:clip_name".

 "be:originator" and "be:originator_data" Fields

Let's say you're a sender application, and you've asynchronously sent off a drag message. Then you receive a BMessage. Is it the reply to your
original message? And if so, how do you access data about the original drag (such as where the mouse was clicked) you might need in order to
complete the data message? Since the original drag message was sent asynchronously, your application went merrily on its way immediately after
sending, and no longer remembers what the heck it dragged off before. What do you do? This is where "be:originator" and "be:originator_data" come
in.

• "be:originator" should be filled in with something that identifies your application to itself; it doesn't really matter what. We'll see how this
is used in a second...

• "be:originator_data" can be filled in with data about the drag that you'll need to use later on in the drag'n'drop negotiation. This could be
something as simple as the mouse position, or it could be a much more complex piece of information about the context of the application at
the time the drag was started. It's up to you, and of course, you don't have to use "be:orginator_data" at all.

If you fill in "be:originator" and "be:originator_data" properly on all of your outgoing drag messages, then here is what your app can do when it
receives a BMessage that may be a negotiation message responding to a previously sent (asynchronous) drag message:

1. Your app checks to ensure that the incoming message has the correct format for a negotiation message (we'll describe the format of negotiation
messages in a bit). If it does, then go on...

2. Your app uses BMessage::IsReply() to check if the incoming message is a reply to a previous message.

3. If the incoming message is in fact a reply, your app uses BMessage::Previous() to obtain the original message; the message the
incoming message was sent in reply to.

4. Now, your app can examine "be:originator" in the original message, to see if it recognizes that value as indicating a drag message sent out by
itself. If it does, then the incoming BMessage is in fact a negotiation message in response to your original drag message; your app can extract
necessary context data from "be:originator_data", and go on to construct and send the data message.

 Drag and Drop

6

 The "be:data" Field

This field was used in the original drag'n'drop protocol to carry the dragged data. It is not used in the negotiated drag'n'drop protocol.

 The "_drop_point_" Field

This field contains a BPoint giving the screen coordinate of the mouse cursor, when the drag was ended (i.e. when the mouse button was released
and the data dropped.) It's added automatically by the system−−you don't create or add to it yourself.

 The "_drop_offset_" Field

Whether you have your application display a bitmap or a rectangular outline during a drag, the dragged area occupies a rectangle. (Though it may not
appear so to the user, since with a bitmap, sections of the bitmap can be transparent). "_drop_offset_" gives as a BPoint the distance from the top
left point of the dragged area to the position of the mouse cursor within that dragged area. [xxx I think this is correct but just want to be sure.]It's added
automatically by the system−−you don't create or add to it yourself.

 Passing Data in a File

Using a BMessage to pass a large amount of data from one application to another may not be desirable; at the extreme, you may not have enough
memory to accommodate the entire BMessage. If you need to pass large amounts of data in a drag'n'drop operation, you may prefer to do so via a
file.

As far as passing data by a file goes, the sender application can indicate one of two things when sending the drag message to the receiver:

• The sender can offer to pass the data in a file, as well as via a BMessage. The receiver then has the option of accepting the data either
through a BMessage, or through a file.

• The sender can state that it will only pass the data via a file. The receiver app, if it wants the data, had better agree.

In both cases, the sender's ability to send data via a file is indicated by a value in the drag message's "be:types" field of B_FILE_MIME_TYPE. If
B_FILE_MIME_TYPE is the first entry in the "be:types" field, than the sender will pass data only in a file, and anything else in "be:types" will be
ignored; if there are entries in "be:types" before a value of B_FILE_MIME_TYPE, then those entries are types with which the sender is prepared to
send data directly in the data message.

If the sender has indicated, via the presence of a B_FILE_MIME_TYPE value in "be:types", that it is willing to pass data via a file, then the formats in
which it can provide that file are listed in the "be:filetypes" field. If a value if B_FILE_MIME_TYPE is not present somewhere in the "be:types" field,
then the sender is not able to pass data via a file, and any values in the "be:filetypes" field will be ignored.

 Protocol for the Negotiation Message

When the receiver application receives the initial drag message from the sender application, it examines the data message in that message, to ascertain
what actions the sender application can carry out, and how it can provide the desired data in the final drag message. Using this information, the
receiver application formulates the negotiation message, which it sends back as a reply to the original drag message using the
BMessage::SendReply() function.

 A Negotiation Message is Characterized by its 'what' Member

Recall that the drag message constructed by the sender application contained (among other things) a "be:actions" message field, which indicated the
actions the sender was willing to perform upon the dragged data. The allowable actions (at the time of this writing−−further actions may be added in
the future) are given by the following constants:

• B_COPY_TARGET

• B_MOVE_TARGET

• B_LINK_TARGET

• B_TRASH_TARGET

• B_MOVE_SELECTION_TO (for Tracker drags only.)

• B_COPY_SELECTION_TO (for Tracker drags only.)

When constructing the negotiation message, the receiver application will choose one of the actions listed in the data message's "be:types" message
field (remember, not all allowable actions will necessarily be listed in this message field), and use that action as the value of the what member in the
negotiation message. This will inform the sender application of which of the possible actions is desired by the receiver.

 Message Fields in the Negotiation Message

In addition to the action contained in the what member, the negotiation message may also contain a number of message fields; exactly which message
fields are defined depends somewhat on the requested action. The allowable message fields are:

• "be:types": One or more strings denoting the data formats the receiver is willing to accept the dragged data in, as part of the data message.
These should be chosen from the "be:types" field of the drag message. If the "be:types" field of the negotiation message contains more than
one value, then the first value is the format the receiver would prefer to get data in, but the sender may choose any of the formats, at its
discretion. Of course, if the sender has indicated in the drag message that it will only pass data through a file, values in the negotiation
message's "be:types" message field will be ignored when the negotiation message gets back to the sender.

• "be:filetypes": One or more strings denoting the data formats the receiver is willing to accept file data in, assuming of course that the
sender indicated in its drag message that it was willing to provide the dragged data via a file. The values in the negotiation message's
"be:filetypes" field should be chosen from those provided in the drag message's "be:filetypes" field. It the negotiation message contains
more than one value in "be:filetypes", then it would prefer to be given a file in the first listed format, but the sender is free to use any of the
listed formats.

 Drag and Drop

7

• "directory": If the sender decides to (or is forced to) pass data to the receiver via a file, the entry_ref stored in the "directory" field of
the negotiation message indicates the directory that the file should be created in.

• "name": If the sender decides to (or is forced to) pass data to the receiver via a file, the string in this field should be used as the name of the
file. Note: the receiver should create the file before deciding on a file name, to ensure that file name is in fact available, and will remain
available.

Of course, you can leave out fields that don't apply to a particular action. For example, if the receiver chooses B_TRASH_TARGET as the action (by
putting a value of B_TRASH_TARGET into the what member of the negotiation message), no message fields are required; in fact, the sender doesn't
even need to respond to a request of B_TRASH_TARGET with a data message, it simply has to delete the dragged data.

 Protocol for the Data Message

The data message is the third and final message sent as part of a negotiated drag'n'drop. It is sent in response to a negotiation message, using the
BMessage::SendReply() function, and is sent only if the sender application has elected to pass the dragged data directly in a message. If the
sender application passes data to the receiver via a file, no data message is sent. [xxx just want to check, is this correct? It would seem you'd want to at
least send confirmation that the write was successful. Or should the receiver just do a node monitor kind of thing?]

 When Data Is Sent in the Data Message

If the sender elects to send the dragged data directly in the data message, then the data message will be constructed with the following structure:

• A what member set to the value of the B_MIME_DATA constant.

• A single message field, whose name indicates the type of mime data being sent, and whose contents consist of the data itself. For example,
if you drag some text from one text processing window to another, the final data message (after the drop and negotiation messages have
been sent) might contain a message field named "text/plain", which contains the text being dragged. Alternatively, if you dragged text from
an HTML viewer, the data message might (depending on the negotiations) have a single field called "text/html", which would contain the
text including the html formatting statements.

Note that when the data messages arrives at the receiver, it may contain more than the single message field described above; other message fields
might be added automatically, by parts of the system. However, the message field above is the only one you add.

 Handling Drops from 'Old' Applications
Negotiated drag'n'drop was defined relatively recently; older applications may still use the "old−style" drag'n'drop. It's simple for your application to
take into the account that it might be a receiver for such a drop.

Under the old style drag'n'drop, a single message was sent from the sender to the receiver, with a what member of B_MIME_DATA, and the value of
the dragged data in the "be:data" message field. [xxx how is the type of the enclosed data determined?] Since your receiver application will need to
monitor for BMessages with a what field of B_MIME_DATA (i.e. your application will need to look for the data messages that might occur as part of
a negotiated drag'n'drop), it's simple to add in a bit more code that handles the fact that such a message may occur without being part of a negotiation,
and may contain a "be:data" field.

 Summary of the Negotiated Drag'n'Drop Protocol

 Drag Message

The structure of a drag message is as follows:

• A what member of B_SIMPLE_DATA

• Three message fields "be:types", "be:filetypes" and "be:type_descriptions", which contain (respectively) formats the sender is willing to
pass data in via the data message, formats the sender is willing to pass data via a file, and user−friendly descriptions of the different
formats.

• A message field "be:actions" containing a list of actions the sender is willing to perform at the request of the receiver.

• An optional field "be:clip_name" indicating a suggested name for a clipping.

• Optional fields "be:originator" and "be:originator_data", which may be used to pass store context information during an asynchronous
drag'n'drop.

• "_drop_point_" and "_drop_offset_", which are filled in by the system, and provide information about where the mouse cursor was
positioned when the drop took place.

 Negotiation Message

The structure of a negotiation message is as follows:

• A what member, which is one of the values extracted from the "be:actions" field of the drag message to which this negotiation message is
a reply.

• A list of formats in the "be:types" message field, chosen from the list provided in the "be:types" of the drag message. This indicates the
formats the receiver is willing to accept data in. If the value given by the global constant B_FILE_MIME_TYPE is in the list, then the
receiver is willing to accept data through a file, as well as through the data message. Note that values after an entry of

 Drag and Drop

8

B_FILE_MIME_TYPE will be ignored; thus, if B_FILE_MIME_TYPE is the first element of "be:types", then the receiver is willing to
accept data only through a file. If there is more than one value in "be:types", the first value is the preferred format.

• A list of formats in the "be:filetypes" message field, which indicates file formats the receiver is willing to accept, if data is passed in a file.
This is meaningful only if "be:types" contains a value of B_FILE_MIME_TYPE as one of its values. If there is more than one value in
"be:filetypes", the first value is the preferred format.

• "directory" and "name" fields, which should be provided if the negotiation message has stated that the receiver is willing to accept data via
a file. "directory" is an entry_ref specifying where the file should be placed, and "name" is a string specifying the desired name of the file.

 Data Message

The structure of a data message is as follows:

• A what member of B_MIME_DATA.

• A single data message field added by the program code; the name of this field is the mime type of the enclosed data, and the value of this
field is the data itself. For example, a block of plain text would be sent in a message field named "text/plain". The mime type for the
enclosed data is chosen from the list of formats in the "be:types" field of the negotiation message to which this message is a reply.

 Drag and Drop

9

	The Device Kit - Table of Contents
	 Drag and Drop

