
 Background Images

The Device Kit − Table of Contents

Background Images...1

i

Background Images
Declared in: be/be_apps/Tracker/Background.h

Tracker lets you put background images on each workspace on your desktop and in the background of individual Tracker folder windows.

Currently, Tracker only paints the background of a folder window when the window is in icon (or mini−icon) view mode.

Background Attributes

Information about the background image for a folder is stored as a flattened BMessage in the folder's B_BACKGROUND_INFO file attribute. The
B_DESKTOP_FOLDER directory holds the background info for the workspaces (one flattened message per workspace).

The B_BACKGROUND_INFO attribute's data is a flattened BMessage with these fields:

B_BACKGROUND_IMAGE B_STRING_TYPE The full path to the image. The image needs to be in a format understood by one of the
translators (see the Translation Kit) installed on the system.

B_BACKGROUND_MODE B_INT32_TYPE Specifies how the background is placed (tiled, centered, etc). See the list of mode
constants after this table.

B_BACKGROUND_ORIGIN B_POINT_TYPE
If B_BACKGROUND_MODE is B_BACKGROUND_MODE_USE_ORIGIN, the image
will be drawn with the upper left corner at this point (which can be anything, even
negative).

B_BACKGROUND_ERASE_TEXTB_BOOL_TYPE
If true the icon label will have its background erased to the window's background
color, otherwise the label will be drawn on top of the image (which could make it
difficult to read).

B_BACKGROUND_WORKSPACESB_UINT32_TYPE A bitmask indicating which workspaces the image should be drawn on. This only
applies to Desktop images.

The B_BACKGROUND_MODE values are:

• B_BACKGROUND_MODE_USE_ORIGIN. Draw the image once at the location specified by B_BACKGROUND_ORIGIN, relative to the
upper−left corner of the window or Desktop.

• B_BACKGROUND_MODE_CENTERED (only works on Desktop) Center the image.

• B_BACKGROUND_MODE_SCALED (only works on Desktop) Scale the image to fit.

• B_BACKGROUND_MODE_TILED Tile the image to cover the entire window/Desktop.

You can write multiple sets of these message fields into the Desktop's B_BACKGROUND_INFO attribute message in order to put different images on
different workspaces. The fields are correlated by index. Don't put different B_BACKGROUND_IMAGE paths onto the same workspace though, the
behavior is undefined.

For example, this is OK:

 ...
 /* ALMOST_ALL_WORKSPACES is every workspace except the first */
 const int32 ALMOST_ALL_WORKSPACES = 0xffffffff − 0x00000001;
 const int32 OTHER_WORKSPACE = 0x00000001;
 ...
 BMessage backgrounds;

 /* Add the first image to ALMOST_ALL_WORKSPACES */
 backgrounds.AddString(B_BACKGROUND_IMAGE, "/boot/home/nice.jpg");
 backgrounds.AddInt32(B_BACKGROUND_WORKSPACES, ALMOST_ALL_WORKSPACES);
 backgrounds.AddInt32(B_BACKGROUND_MODE, B_BACKGROUND_MODE_TILED);
 backgrounds.AddPoint(B_BACKGROUND_ORIGIN, BPoint(0.0, 0.0));
 backgrounds.AddBool(B_BACKGROUND_ERASE_TEXT, true);

 /* Add the second image to the OTHER_WORKSPACE */
 backgrounds.AddString(B_BACKGROUND_IMAGE, "/boot/home/nicer.jpg");
 backgrounds.AddInt32(B_BACKGROUND_WORKSPACES, OTHER_WORKSPACE);
 backgrounds.AddInt32(B_BACKGROUND_MODE, B_BACKGROUND_MODE_SCALED);
 backgrounds.AddPoint(B_BACKGROUND_ORIGIN, BPoint(0.0, 0.0));
 backgrounds.AddBool(B_BACKGROUND_ERASE_TEXT, true);
 ...

This is not OK, and results in undefined behaviour:

 ...
 const int32 ALL_WORKSPACES = 0xffffffff;
 ...
 BMessage backgrounds;

 backgrounds.AddString(B_BACKGROUND_IMAGE, "/boot/home/nice.jpg");
 backgrounds.AddInt32(B_BACKGROUND_WORKSPACES, ALL_WORKSPACES);

1

Background.h
#BMessage
#BMessage
#The%20media_format%20structure%20can%20describe%20any%20media%20data%20format%20the%20BeOS%20can%20support.
#The%20media_format%20structure%20can%20describe%20any%20media%20data%20format%20the%20BeOS%20can%20support.
#B_POINT_TYPE
#B_BOOL_TYPE
#true
#B_UINT32_TYPE

 /* ... other B_BACKGROUND_* data here ... */

 backgrounds.AddString(B_BACKGROUND_IMAGE, "/boot/home/nicer.jpg");
 backgrounds.AddInt32(B_BACKGROUND_WORKSPACES, ALL_WORKSPACES);
 /* ... other B_BACKGROUND_* data here ... */
 ...

The B_BACKGROUND_INFO attribute's contents might be extended in the future (but will remain compatible with the existing attribute
data). Be prepared to preserve any data you don't recognize by reading in the existing B_BACKGROUND_INFO attribute (if one exists).

Special Folders

There are two special folders you can apply attributes to:

B_DESKTOP_DIRECTORY
Applying the B_BACKGROUND_INFO attribute to B_DESKTOP_DIRECTORY (see
find_directory() in the Storage Kit) will change the Desktop's background image (but see
below to find out how to tell the Tracker to update the image).

Tracker/DefaultFolderTemplate inside
B_USER_SETTINGS_DIRECTORY

Applying the B_BACKGROUND_INFO attribute to this directory sets the default folder background.
Any folder that doesn't have its own B_BACKGROUND_INFO will display this image.

Notifying Tracker

Once you've written an appropriate B_BACKGROUND_INFO attribute, you'll want to tell the Tracker to pick up the new background image.

Send the Tracker's main looper (remember, the Tracker's signature is "application/x−vnd.Be−TRAK") a BMessage with a what of
B_RESTORE_BACKGROUND_IMAGE to tell it to reload the desktop background image.

Sending the same message to the looper for a specific Tracker window will tell that window to reload its background image. This is a little trickier
because you need to find the right window.

Refreshing All Windows

Taking the shotgun approach, you can tell all of the open Tracker windows to repaint their backgrounds by using Tracker scripting (see Scripting in the
Application Kit). You'll need to do this if you change the default folder background image.

This code asks the Tracker for windows that have a "Poses" property and sends them a B_RESTORE_BACKGROUND_IMAGE. This updates every
Tracker window that's displaying a folder's contents.

 BMessenger tracker("application/x−vnd.Be−TRAK");

 int32 i = 0;
 BMessage reply;
 int32 err;

 do {
 /* scripting message */
 BMessage msg(B_GET_PROPERTY);

 /* look at the "Poses" in every Tracker window */
 msg.AddSpecifier("Poses");
 msg.AddSpecifier("Window", i++);

 reply.MakeEmpty();

 tracker.SendMessage(&msg, &reply);

 /* break out of the loop when we're at the end of
 * the windows
 */
 if(reply.what == B_MESSAGE_NOT_UNDERSTOOD &&
 reply.FindInt32("error", &err) == B_OK &&
 err == B_BAD_INDEX)
 break;

 /* don't stop for windows that don't understand
 * a request for "Poses"; they're not displaying
 * folders
 */
 if(reply.what == B_MESSAGE_NOT_UNDERSTOOD &&
 reply.FindInt32("error", &err) == B_OK &&
 err != B_BAD_SCRIPT_SYNTAX)
 continue;

 BMessenger m;
 if(reply.FindMessenger("result", &m) == B_OK) {
 /* m is the messenger of a Tracker window with
 * a folder inside
 */

 m.SendMessage(B_RESTORE_BACKGROUND_IMAGE);
 }

 } while(true);

Background Images

2

#find_directory()
#BMessage

Refreshing One Window

If want to refresh the background of the folder you've changed, you scan through the open folders using code similar to the above, until you find the
folder with the "Path" you're interested in. Once you've got the right window, you send it a B_RESTORE_BACKGROUND_IMAGE message. Using this
technique is nicer (from the user's point of view) because only one Tracker window gets updated.

Here's the same code, modified to target a specific path. Assume you've still got the path in question in the_path (you just used it as a
B_BACKGROUND_IMAGE):

 BMessenger tracker("application/x−vnd.Be−TRAK");

 /* CHANGE: we'll increment "i" at the start of the loop
 * now; this lets us use it later when we find
 * a Window with a Poses
 */
 int32 i = −1;
 BMessage reply;
 int32 err;

 do {
 /* CHANGE: */
 i++;

 /* scripting message */
 BMessage msg(B_GET_PROPERTY);

 /* look at the "Poses" in every Tracker window */
 msg.AddSpecifier("Poses");
 msg.AddSpecifier("Window", i); /* CHANGE */

 reply.MakeEmpty();

 tracker.SendMessage(&msg, &reply);

 /* break out of the loop when we're at the end of
 * the windows
 */
 if(reply.what == B_MESSAGE_NOT_UNDERSTOOD &&
 reply.FindInt32("error", &err) == B_OK &&
 err == B_BAD_INDEX)
 break;

 /* don't stop for windows that don't understand
 * a request for "Poses"; they're not displaying
 * folders
 */
 if(reply.what == B_MESSAGE_NOT_UNDERSTOOD &&
 reply.FindInt32("error", &err) == B_OK &&
 err != B_BAD_SCRIPT_SYNTAX)
 continue;

 /* CHANGE: everything from here down is new */

 /* make a messenger to this window */
 BMessenger m;
 if(reply.FindMessenger("result", &m) != B_OK) continue;

 /* found a Window with a Poses, ask for its Path */
 msg.MakeEmpty();
 msg.what = B_GET_PROPERTY;
 msg.AddSpecifier("Path");
 msg.AddSpecifier("Poses");
 msg.AddSpecifier("Window", i);

 reply.MakeEmpty();

 tracker.SendMessage(&msg, &reply);

 /* go on with the next if this din't have a Path */
 if(reply.what == B_MESSAGE_NOT_UNDERSTOOD) continue;

 /* dig out the Path */
 entry_ref ref;
 if(reply.FindRef("result", &ref) == B_OK) {
 BEntry ent(&ref);
 BPath path(&ent);

 /* these are not the Paths you're looking for */
 if(strcmp(the_path, path.Path())) continue;
 }

 /* if you got this far, you have a messenger to a valid Tracker
 * window displaying a folder with the path you were after,
 * so tell it to refresh its background
 */
 m.SendMessage(B_RESTORE_BACKGROUND_IMAGE);

 } while(true);

Background Images

3

	The Device Kit - Table of Contents
	Background Images

