
 The Application Kit

The Application Kit − Table of Contents

 The Application Kit ...1

 Messaging ...2

 Scripting ...7

 BApplication ..12

 BClipboard ...19

 BCursor ..23

 BHandler ..25

 BInvoker ...31

 BLooper ..35

 BMessage ..43

 BMessageFilter ..56

 BMessageQueue ...59

 BMessageRunner ...61

 BMessenger ..63

 BPropertyInfo ..67

 BRoster ...70

 Global Variables, Constants, and Defined Types ...76

The Application Kit: Master Index..82

i

 The Application Kit
The Application Kit is the starting point for all applications. Its classes establish an application as an identifiable entityone that can cooperate and
communicate with other applications.

The Application Kit is divided into these topics:

• The BApplication class. All but the simplest of applications must have one (and only one) BApplication object. This object is typically an
instance of a BApplication subclass that you create especially for your application. The BApplication object makes a connection to the App
Server and runs the application's main message loop.

• Messaging. The kit provides a messaging service that lets threads talk to each other. This service can deliver messages within your own
application, or from one application to another. It's also used by the system to deliver user event messages (key clicks, mouse moves) to
your application. Most of the Application Kit's classes are involved in the messaging system.

• Scripting. The objects that you create can be controlled by commands issued from other applications.

• The BRoster class. The BRoster object keeps track of all running applications. It can identify applications, launch them, and provide the
information needed to set up communications with them.

• The BClipboard class. The BClipboard object provides an interface to the clipboard where cut and copied data can be stored, and from
which it can be pasted.

• The BCursor class. You use BCursor objects to represent distinct cursors. Functions defined by BApplication and BView let you assign
your cursors to your entire application, or to individual views .

1

#BView

 Messaging
The Application Kit provides a message−passing system lets your application send messages to and receives messages from other applications
(including the Be−defined servers and apps), and from other threads in your own application.

The primary messaging classes are:

• BMessage represents a message.

• BLooper runs a loop that receives in−coming messages and figures out which BHandler should handle them.

• BHandler defines hook functions that are called to handle in−coming messages.

• BMessenger represents a message's destination (a combination of BLooper and BHandler), whether it's local or remote. The object is most
useful for sending messages to other applicationsyou don't need it for local calls.

The other messaging classes are:

• BMessageQueue is a fifo that holds a BLooper's in−coming messages.

• BMessageFilter is a device that can examine and (potentially) reject or re−route in−coming messages.

• BInvoker is a convenience class that lets you treat a message and its target (the BHandler that will handle the message) as a single object.

• BMessageRunner lets you send the same message over and over, at regular intervals.

The rest of this chapter looks at...

• The essential features of the four fundamental classes. ("Features of the Fundamental Classes")

• How a BLooper decides which BHandler should handle an in−coming message. ("From Looper to Handler")

• The different methods for sending messages and receiving replies. ("Sending a Message").

describes how the classes fit together in the messaging system with an emphasis on what you can do in your application to take part.

 Features of the Fundamental Classes
Looked at collectively, the four fundamental messaging classes comprise a huge chunk of API. Fortunately, the essential part of this API is pretty
small; that's what we're going to look at here.

 The BMessage Class

In the BMessage class, there's one essential data member, and two essential functions:

• The what data member is an arbitrary uint32 value that describes (symbolically) what the message is about. You can set and examine
what directlyyou don't have to use functions to get to it. The what value is called the object's command constant. The BeOS defines some
number of command constants (such as B_QUIT_REQUESTED, and B_MOUSE_DOWN), but you'll also be creating constants of your own.
Keep in mind that the constant's value is meaninglessit's just a code that identifies the "intent" of the message (and it's only meaningful if
the receiver recognizes the constant).

• The two essential functions are AddData() and FindData(). These functions add data to a message you're about to send, and retrieve
it from a message you just received. A BMessage can hold any amount of data; each data item (or "field") is identified by name, type, and
index. For example, you can ask a message for the third boolean value named "IsEnabled" that it contains. In general, you use type−specific
functions such as Add/FindString() and Add/FindInt32() rather than Add/FindData(). The query we just posed would
actually look like this:

 /* The args are: name, index, value (returned by reference) */
 bool returnValue;
 aMessage.FindBool("IsEnabled", 2, &returnValue);

In summary, a BMessage contains (1) a command constant and (2) a set of data fields. Every BMessage that's used in the messaging system must have
a command constant, but not every object needs to have data fields. (Other parts of the BeOS use BMessages for their data only. The
BClipboard object, for example, ignores a BMessage's command constant.)

When discussing system−generated BMessage objects, we refer to the object by its command constant. For example, "a
B_MOUSE_DOWN" means "a BMessage that has B_MOUSE_DOWN as its command constant".

Notice that a BMessage doesn't know how to send itself. However, as we'll see later, it does know how to reply to its sender once it's in the hands of
the recipient.

2

#TempoChange(),SprayTempoChange()
#TempoChange(),SprayTempoChange()
#Integer%20Types
#B_MOUSE_DOWN
#B_MOUSE_DOWN
#B_MOUSE_DOWN

 The BLooper Class

BLooper's role is to receive messages and figure out what to do with them. There are four parts to this job, embodied in these functions:

• Every BLooper spawns a thread in which it runs a message loop. It's in this thread that the object receives messages. But you have to kick
the BLooper to get it to run; you do this by calling the Run() function. When you're done with the obejctwhen you no longer need it to
receive messagesyou call Quit().

• Although you never invoke it directly, DispatchMessage() is the guts of the message loop. All messages that the looper receives show
up in individual invocations of DispatchMessage(). The function decides where the message should go next, which is mostly a matter
of deciding whether (1) the message should be handled by a system−defined hook function, or (2) passed to BHandler's
MessageReceived() function (which we'll talk about in a moment). Three other important aspects of DispatchMessage() are...

• It runs in the BLooper's message thread (or message loop); this is a separate thread that the object spawns specifically to receive in−coming
messages.

• Individual DispatchMessage() invocations are synchronous with regard to the loop. In other words, when a message shows up,
DispatchMessage() is called and runs to completion before the next message can be processed. (Messages that show up while
DispatchMessage() is busy aren't lostthey're queued up in a BMessageQueue object.)

• It's fully implemented by BLooper (and kit classes derived from BLooper). You should rarely need to override it in your application.

• The PostMessage() function delivers a message to the BLooper. In other words, it invokes DispatchMessage() in the looper's
message thread. You call PostMessage() directly in your code. For example, here we create a BMessage and post it to our
BApplication object (BApplication inherits from BLooper):

 /* This form of the BMessage constructor sets the command constant. */
 be_app−>PostMessage(new BMessage(YOUR_CONSTANT_HERE))

In the Be kits, the BApplication and BWindow classes inherit from BLooper.

 The BHandler Class

BHandler objects are called upon to handle the messages that a BLooper receives. A BHandler depends on two essential function:

• MessageReceived() is the function that a BLooper calls to dispatch an in−coming message to the BHandler (the BMessage is passed
as the function's only argument). This is a hook function that a BHandler subclass implements to handle the different types of messages that
it expects to receive. Most implementations examine the message's command constant and go from there. A typical outline looks like this:

 void MyHandler::MessageReceived(BMessage *message)
 {
 /* Examine the command constant. */
 switch (message−>what) {

 case YOUR_CONSTANT_HERE:
 /* Call a function that handles this sort of message. */
 HandlerFunctionA();
 break;

 case ANOTHER_CONSTANT_HERE:
 /* ditto */
 HandlerFunctionB();
 break;

 default:
 /* Messages that your class doesn't recognize must be passed
 * on to the base class implementation. */

baseClass::MessageReceived(message);
 break;
 }
 }

• BHandler's other essential function is defined by BLooper: BLooper::AddHandler(). This function adds the (argument)
BHandler object to the (invoked−upon) BLooper's list of candidate handlers (its handler chain). If a BHandler wants to handle messages
that are received by a BLooper, it must first be added to the BLooper's handler chain.

BLooper inherits from BHandler, and automatically adds itself to its own handler chain. This means that a BLooper can handle the messages that it
receivesthis is the default behaviour for most messages. We'll examine this issue in depth later in this chapter.

The other classes that inherit from BHandler are BView and BShelf (both in the Interface Kit).

 The BMessenger Class

A BMessenger's most important feature is that it can send a message to a remote application. To do this takes two steps, which point out the class'
essential features:

• You identify the application that you want to send a message to (the "target") in the BMessenger constructor. An application is identified by
its app signature (a MIME string).

• The SendMessage() function sends a message to the target.

BMessengers can also be used to target local looper/handler pairs.

 Messaging

3

#BWindow
#BView
#BShelf

 From Looper to Handler
A BLooper pops a message from its message queue and, within its DispatchMessage() function, dispatches the message by invoking a
BHandler function. But (1) which BHandler and (2) which function?

 Finding a Handler

First, let's answer the "which BHandler" question. To determine which BHandler should handle an in−coming message, a BLooper follows these steps:

1. Does the BMessage target a specific BHandler? Both the BLooper::PostMessage() and BMessenger::SendMessage() functions
provide additional arguments that let you specify a target handler that you want to have handle the message (you can also set the target in the
BMessenger constructor). If a BHandler is specified, the BMessage will show up in that object's MessageReceived() function (or it will invoke a
message−mapped hook function, as explained below).

2. Does the BLooper designate a preferred handler? Through its SetPreferredHandler() function, a BLooper can designate one of the
objects in its handler chain as its preferred handler, and passes all messages to that object.

3. The BLooper handles the BMessage itself. If there's no target handler or preferred handler designation, the BLooper handles the message itselfin
other words, the message is passed to the BLooper's own MessageReceived() function (or message−mapped hook).

We should mention here that both the BApplication and the BWindow class fine−tune this decision process a bit. However, the meddling that they do
only applies to system messages (described below). The messages that you define yourself (i.e. the command constants that your application defines)
will always follow the message dispatching path described here.

If you look at the DispatchMessage() protocol, you'll notice that it has a BMessage and a BHandler as arguments. In
other words, the "which handler" decision described here is actually made before DispatchMessage() is called. In
general, this is an implementation detail that you shouldn't worry about. If you want to think that
DispatchMessage() makes the decisionand we've done nothing to disabuse you of this notiongo ahead and think it.

 Finding a Function

As described above, a BLooper passes a BMessage to a BHandler by invoking the latter's MessageReceived() function. This is true of all
messages that you create yourself, but it isn't true of certain messages that the system defines and sends. These system−generated messages (or system
messages)particularly those that report user events such as B_MOUSE_DOWN or B_APP_ACTIVATEDinvoke specific hook functions.

For example, when the user presses a key, a B_KEY_DOWN message is sent to the active BWindow object.. From within its
DispatchMessage() function, BWindow invokes the MouseDown() function of the BView that currently holds keyboard focus. (When a
BView is made the focus of keyboard events, its window promotes it to preferred handler.)

So the question of "which function" is fairly simple: If the BMessage is a system message that's mapped to a hook function, the hook function is
invoked. If it's not mapped to a hook function, the BHandler's MessageReceived() function is invoked.

A full list of system messages and the hook functions that they're mapped to is given in the System Messages Appendix. Note that not all system
messages are mapped to hook functions; some of them do show up in MessageReceived().

 Inheritance and the Handler Chain

Let's look at MessageReceived() again. It was asserted, in a code snippet shown earlier, that a typical MessageReceived() implementation
should include an invocation of the base class' version of the function:

 void MyHandler::MessageReceived(BMessage *message)
 {
 switch (message−>what) {

 /* Command constants that you handle go here. */

 default:
 /* Messages that your class doesn't recognize must be passed
 * on to the base class implementation. */

baseClass::MessageReceived(message);
 break;
 }
 }

This isn't just a good ideait's an essential part of the messaging system. Forwarding the message to the base class does two things: It lets messages
(1) pass up the class hierarchy, and (2) pass along the handler chain (in that order).

Passing up the class hierarchy is mostly straight−forwardit's no different for the MessageReceived() function than it is for any other function. But
what happens at the top of the hierarchyat the BHandler class itselfadds a small wrinkle. BHandler's implementation of MessageReceived() looks
for the next handler in the BLooper's handler chain and invokes that object's MessageReceived() function.

 Sending a Message
There are two functions that send messages to distinct recipients:

• BLooper::PostMessage() can be used if the target (the BLooper that the PostMessage() function is invoked upon) lives in the

 Messaging

4

#BWindow
#B_MOUSE_DOWN
#B_KEY_DOWN
#BWindow
#BWindow
#MouseDown()
#BView
#BView

same application as the message sender.

• BMessenger::SendMessage() lets you send messages to remote applications. The BMessenger object acts as a proxy for the remote
app. (SendMessage() can also be used to send a message to a local BLooper, for reasons that we'll discuss later.)

 The PostMessage() Function

You can post a message if the recipient BLooper is in your application:

 myLooper−>PostMessage(new BMessage(DO_SOMETHING), targetHandler);

As shown here, you can specify the handler that you want to have handle a posted message. The only requirement is that the BHandler must belong to
the BLooper.

If the handler argument is NULL, the message is handled by the looper's preferred handler

 myLooper−>PostMessage(new BMessage(DO_SOMETHING), NULL);

By using the default handler, you let the looper decide who should handle the message.

The creator of the BMessage retains ownership and is responsible for deleting it when it's no longer needed.

 The SendMessage() Function

If you want to send a message to another application, you have to use BMessenger's SendMessage() function. First, you construct a
BMessenger object that identifies the remote app by signature...

 BMessenger messenger("application/x−some−app");

...and then you invoke SendMessage():

 messenger.SendMessage(new BMessage(DO_SOMETHING));

The creator of the BMessage retains ownership and is responsible for deleting it when it's no longer needed.

 Handling a Reply

Every BMessage that you send identifies the application from which it was sent. The recipient of the message can reply to the message whether you
(the sender) expect a reply or not. By default, reply messages are handled by your BApplication object. If you want reply messages to be handled by
some other BHandler, you specify the object as a final argument to the PostMesssage() or SendMessage() call:

 myLooper−>PostMessage(new BMessage(DO_SOMETHING), targetHandler, replyHandler);
 /* and */
 myMessenger.SendMessage(&message, replyHandler);

The reply is sent asynchronously with regard to the PostMessage()/SendMessage() function.

SendMessage() (only) lets you ask for a reply message that's handed back synchronously in the SendMessage() call itself:

 BMessage reply;
 myMessenger.SendMessage(&message, &reply);

SendMessage() doesn't return until a reply is received. A default message is created and returned if the recipient doesn't respond quickly enough.

 Receiving a Message

BMessage's SendReply() function has the same syntax as SendMessage(), so it's possible to ask for a synchronous reply to a message that is
itself a reply,

 BMessage message(READY);
 BMessage reply;
 theMessage−>SendReply(&message, &reply);
 if (reply−>what != B_NO_REPLY) {
 . . .
 }

or to designate a BHandler for an asynchronous reply to the reply:

 theMessage−>SendReply(&message, someHandler);

In this way, two applications can maintain an ongoing exchange of messages.

 Messaging

5

 Handler Associations

To be notified of an arriving message, a BHandler must "belong" to the BLooper; it must have been added to the BLooper's list of eligible handlers.
The list can contain any number of objects, but at any given time a BHandler can belong to only one BLooper.

Handlers that belong to the same BLooper can be chained in a linked list. If an object can't respond to a message, the system passes the message to its
next handler.

BLooper's AddHandler() function sets up the looper−handler association; BHandler's SetNextHandler() sets the handler−handler link.

 Message Filters
The BMessageFilter class lets create filtering functions that examine and re−route (or reject) incoming messages before they're processed by a
BLooper. Message filters can also be applied to individual BHandler objects.

 Message Protocols
Both the source and the destination of a message must agree upon its formatthe command constant and the names and types of data fields. They must
also agree on details of the exchangewhen the message can be sent, whether it requires a response, what the format of the reply should be, what it
means if an expected data item is omitted, and so on.

None of this is a problem for messages that are used only within an application; the application developer can keep track of the details. However,
protocols must be published for messages that communicate between applications. You're urged to publish the specifications for all messages your
application is willing to accept from outside sources and for all those that it can package for delivery to other applications.

 Messaging

6

 Scripting
Scripting provides a means for programatically controlling some other application by sending it special scripting commands. These commands are
defined by the "scripted" application itself. For example, if you want some other application to be able to tell your application to perform the
"FlipOver" operation, you have to publish the format of the "FlipOver" command. The set of operations that you want to expose is called a "suite."

The BeOS defines some number of suites that correspond to particular classes. For example, all BApplication objects respond to the commands
defined in the "vnd.Be−application" suite. One of the commands in the suite gives you access to the application's windows. When you've located the
window that you want, you can move it, close it, resize it, and so on, according to the commands in the "vnd.Be−window" suite.

 Basics
The scripting framework defines the following notions: commands, properties, and specifiers. If you are familiar with AppleScript, these are
equivalent to verbs, nouns, and adjectives. Commands act on a specific instance of a property, as determined by the specifiers.

 Commands

The command conveys the action of a scripting command and is stored in the what field of the scripting BMessage. There are six standard commands
(defined in be/app/Message.h):

• B_COUNT_PROPERTIES counts the number of instances of a property.

• B_CREATE_PROPERTY creates a new instance of a property.

• B_DELETE_PROPERTY destroys an instance of a property.

• B_EXECUTE_PROPERTY executes an instance of a property.

• B_GET_PROPERTY gets the value of an instance of a property.

• B_SET_PROPERTY sets of the value of an instance of a property. The "data" field contains the new value of the property.

Each of these commands acts on a "property," which is nothing more than a scriptable feature of an object. As a real world example, the windows
owned by an application are properties, as is the title of each window. The particular interpretation of the command depends upon the property it is
acting on. For example, B_DELETE_PROPERTY, acting on the "Entry" property of a Tracker window, causes a file to be moved to the trash.
However, the same command acting on the "Selection" property of the same window removes files from the list of selected items.

Scriptable objects should limit themselves to this set of commands. If an object uses a nonstandard command, it runs the risk of being unusable by
general scripting tools.

 Properties and Specifiers

A property represents a scriptable feature of an object. Properties are named; these names are strings unique within a class. For example, a
BWindow defines properties such as "Frame," "Title," and "View." The data type of the property and its allowable values are determined by the
property. For example, the window's "Frame" accepts B_RECT_TYPE values while the "Title" is a B_STRING_TYPE.

Sometimes a property is represented by another object. For example, BWindow's "View" designates a BView, an object which has a set of properties
distinct from those of BWindow.

An object may have more than one instance of a given property. For example, the "Window" property of BApplication, has as many instances as there
are windows in the application. As a result, there is some ambiguity when you ask for the Window of an application. Instead, it's more correct to ask
for the first Window, or the Window named "Snyder." In other words, a property is not enough to identify a feature; a specific instance must be picked
out as well.

Specifiers are used to target ("specify") particular instances of properties. A specifier is a BMessage containing the following elements:

• The name of the property in the "property" field, stored as a B_STRING_TYPE.

• The specifier constant, indicating a method of identifying a specific instance of the property, in the what field along with any necessary
supporting fields.

There are seven standard specifier constants (defined in <be/app/Message.h>):

• B_DIRECT_SPECIFIER . The property name is sufficient specification by itself, usually because there's only one instance of the
property. If there's more than one value for the property, a B_DIRECT_SPECIFIER would specify them all.

• B_NAME_SPECIFIER . The specifier message has a "name" field of type B_STRING_TYPE with the name of a particular instance of
the property.

• B_ID_SPECIFIER . The specifier message has an "id" field with a unique identifying value of type int32 for a particular instance of
the property.

• B_INDEX_SPECIFIER . The specifier message has an int32 field named "index" with the index to a particular instance of the
property.

• B_REVERSE_INDEX_SPECIFIER . The index counts backwards from the end of the list.

• B_RANGE_SPECIFIER . In addition to an "index" field, the specifier message has an additional int32 field named "range", identifying
"range" items beginning at "index."

7

#BWindow
#B_RECT_TYPE
#B_STRING_TYPE
#BView
#B_STRING_TYPE
#B_STRING_TYPE
#Integer%20Types
#Integer%20Types
#Integer%20Types

• B_REVERSE_RANGE_SPECIFIER . The "index" counts from the end of the list backwards. Depending on the kind of data and the
message protocol, the "range" may extend toward the front of the list from the index or toward the end of the list. In other words, the index
works in reverse, the range may or may not.

As with messages, the precise meaning of a given specifier depends upon the context. Additionally, there may be user−defined (or perhaps more
properly object−defined) specifiers. User−defined specifier constants should be greater than B_SPECIFIERS_END to prevent conflicts with
Be−defined specifiers.

Specifiers are added to the "specifier" field of a scripting message using BMessage::AddSpecifier(). There are several variants of this method,
including shortcuts for adding B_DIRECT_SPECIFIER, B_INDEX_SPECIFIER, B_RANGE_SPECIFIER, and B_NAME_SPECIFIER specifiers.
For all other specifiers, you must manually construct the specifier and add it to the scripting message with AddSpecifier(). For example, to add a
B_ID_SPECIFIER:

 BMessage specifier(B_ID_SPECIFIER); // create a new specifier
 specifier.AddInt32("id", 2827); // add the id number to the specifier
 message.AddSpecifier(&specifier); // add the specifier to the message

You must use AddSpecifier() to add specifiers to a BMessage; it performs additional scripting support work that
AddMessage() doesn't.

 The Specifier Stack

In general, an application will not be able to obtain a BMessenger for the target object; instead, it'll have to settle for a BMessenger targeting the
BApplication of the program containing the desired object. In these cases, a single specifier may be insufficient to target a scripting message. The true
power of specifiers lies in their ability to be chained together in the specifier stack.

An example best illustrates the operation of the specifier stack. The following code snippet creates a message that will target the frame of the second
view of the window named "egg" in the target application:

 message.AddSpecifier("Label");
 message.AddSpecifier("MenuBar");
 message.AddSpecifier("Window", 1);

Repeated calls to AddSpecifier() build the specifier stack. The order of the calls is very important; the specifiers are evaluated in the opposite
order from which they were added. When this message is received by the target application, it will first peel off the third specifier and direct the
message to the second window of the application. The BWindow will then peel off the second specifier and direct the message to the window's key
menu bar. The first specifier ("Label") is then processed by the BMenuBar. This process is covered in more detail below under "ResolveSpecifier()".

 Replies

A reply is generated for every scripting request. The reply message contains the following fields:

• The what data member defaults to B_REPLY unless some other constant is appropriate. For example, if the message was not understood,
the object responds with a B_MESSAGE_NOT_UNDERSTOOD BMessage.

• The B_INT32_TYPE field "error" contains the error code for the operation. This field is always present.

• Responses to a successful B_GET_PROPERTY request will additionally contain the value or values of the requested property in the "result"
array. The data will be of a type appropriate for the property.

Any scriptable objects that you create should also obey the above protocol. Of course, individual objects are free to define their own protocols for
relaying additional information in the reply; in these cases, consult the documentation for the class in question.

 Creating and Sending Scripting Messages
The scripting facilities of an application can be invoked in three easy steps:

• Set the command constant for the scripting message.

• Construct the specifier stack for the scripting message.

• Send the scripting message to the target application.

 Example

Suppose we want to fetch the frame rectangle of the second view of the window titled "egg" in an application with the signature "application/x−fish".
The code:

 BMessage message, reply;
 BRect result;

 // set the command constant
 message.what = B_GET_PROPERTY;

 // construct the specifier stack
 message.AddSpecifier("Frame"); // B_DIRECT_SPECIFIER

 Scripting

8

#BWindow
#B_INT32_TYPE

 message.AddSpecifier("View", 1); // B_INDEX_SPECIFIER
 message.AddSpecifier("Window", "egg"); // B_NAME_SPECIFIER

 // send the message and fetch the result
 BMessenger("application/x−fish").SendMessage(&message, &reply);
 reply.FindRect("result", &result)

Short and sweet.

 Suites
There is one missing element in the scripting system, namely the ability to query an object for its scripting abilities. This is useful when the controlling
application doesn't know the precise type of the object it is scripting. Having a method of discovering the scripting abilities of an object enables more
dynamic uses of scripting.

An object's scripting abilities are organized into one or more scripting "suites," a set of supported messages and associated specifiers. A suite is
identified by a MIME−like string with the "suite" supertype. For example, BControl implements the "suite/vnd.Be−control" scripting suite. Nothing
prevents two objects from implementing the same suite; two sound editors, for example, could have different implementations of a common scripting
suite for filtering audio data.

To ask an object for its supported scripting suites, send it a standard scripting message with a B_GET_PROPERTY request for the "Suites" property:

 message.what = B_GET_PROPERTY;
 message.AddSpecifier("Suites");

 ... add remaining specifiers here ...

 messenger.SendMessage(&message, &reply);

The target object responds with a B_REPLY BMessage with the following fields:

• The error code in "error".

• An array named "suites" containing the names of the suites supported by the object.

• An array named "messages" containing flattened BPropertyInfo objects describing the supported messages and specifiers for the various
supported suites.

Less usefully, you can send a B_GET_SUPPORTED_SUITES BMessage directly to an object and obtain its supported suites in an identically−formed
reply.

Every scriptable object supports the "suite/vnd.Be−handler" suite by dint of its BHandler heritage. This suite is sometimes referred to as the "universal
suite." It performs the following functions:

• Implements the "Suites" propery and responds to B_GET_SUPPORTED_SUITES messages, as described above.

• Implements the "Messenger" property, allowing the caller to obtain a BMessenger to the object, simplifying further communication with
the object.

• Implements the "InternalName" property, returning the name of the BHandler.

• Responds to any other scripting requests with a B_MESSAGE_NOT_UNDERSTOOD BMessage. This is a "catch−all" response after all the
other objects in the hierarchy have rejected the scripting request.

 Making Objects Scriptable
Since scripting messages are passed via BMessengers, objects accepting scripting messages must be derived from BHandler. Typically, adding
scripting support entails little more than overriding the following methods:

• ResolveSpecifier() to direct the scripting message to the appropriate BHandler.

• MessageReceived() to implement the scripting requests.

• GetSupportedSuites() to publish the supported scripting suites.

 ResolveSpecifier()

virtual BHandler *ResolveSpecifier(BMessage *message, int32 index , BMessage *specifier, int32 what, const char
*property)

Implemented by derived classes to determine the proper handler for a scripting message. The message is targeted to the BHandler, but the specifiers
may indicate that it should be assigned to another object. It's the job of ResolveSpecifier() to examine the current specifier (or more, if
necessary) and return the object that should either handle the message or look at the next specifier. This function is called before the message is
dispatched and before any filtering functions are called.

The first argument, message, points to the scripting message under consideration. The current specifier is passed in specifier; it will be at index
index in the specifier array of message. Finally, what contains the what data member of specifier while property contains the name of the targetted

 Scripting

9

#BControl

property.

ResolveSpecifier() returns a pointer to the next BHandler that should look at the message. Here, it has four options:

• If the specifier identifies a BHandler belonging to another BLooper, it should send the message to the BLooper and return NULL. The
message will be handled in the message loop of the other BLooper; it won't be further processed in this one. For example, a BHandler that
kept a list of proxies might use code like the following:

 if ((strcmp(property, "Proxy") == 0)

Since this function resolved the specifier at index, it calls PopSpecifier() to decrement the index before forwarding the
message. Otherwise, the next handler would try to resolve the same specifier.

• If the specifier picks out another BHandler object belonging to the same BLooper, ResolveSpecifier() can return that BHandler.
For example:

 if (proxy) {
 message−>PopSpecifier();

This, in effect, puts the returned object in the BHandler's place as the designated handler for the message. The BLooper will
give the returned handler a chance to respond to the message or resolve the next specifier.

• If it can resolve all remaining specifiers and recognizes the message as one that the BHandler itself can handle, it should return the
BHandler (this). For example:

 if ((strcmp(property, "Value") == 0)

This confirms the BHandler as the message target. ResolveSpecifier() won't be called again, so it's not necessary to
call PopSpecifier() before returning.

• If it doesn't recognize the property or can't resolve the specifier, it should call (and return the value returned by) the inherited version of
ResolveSpecifier().

The BApplication object takes the first path when it resolves a specifier for a "Window" property; it sends the message to the specified BWindow and
returns NULL. A BWindow follows the second path when it resolves a specifier for a "View" property; it returns the specified BView. Thus, a message
initially targeted to the BApplication object can find its way to a BView.

BHandler's version of ResolveSpecifier() recognizes a B_GET_PROPERTY message with a direct specifier requesting a "Suite" for the
supported suites, "Messenger" for the BHandler, or the BHandler's "InternalName" (the same name that its Name() function returns). In all three
cases, it assigns the BHandler (this) as the object responsible for the message.

For all other specifiers and messages, it sends a B_MESSAGE_NOT_UNDERSTOOD reply and returns NULL. The reply message has an "error" field
with B_SCRIPT_SYNTAX as the error and a "message" field with a longer textual explanation of the error.

 MessageReceived()

virtual status_t MessageReceived(BMessage *message)

MessageReceived() is called to process any incoming scripting messages. Scripting messages are treated in this regard much as any other
BMessage. MessageReceived() should be implemented to carry out the actions requested by scripting commands.

 GetSupportedSuites()

virtual status_t GetSupportedSuites(BMessage *message)

Implemented by derived classes to report the suites of messages and specifiers they understand. This function is called in response to either a
B_GET_PROPERTIES scripting message for the "Suites" property or a B_GET_SUPPORTED_SUITES message.

 Scripting

10

#BWindow
#BWindow

Each derived class should add the names of the suites it implements to the "suites" array of message. Each item in the array is a MIME−like string
with the "suite" supertype. In addition, the class should add corresponding flattened BPropertyInfo objects in the "messages" array. A typical
implementation of GetSupportedSuites() looks like:

 status_t MyHandler::GetSupportedSuites(BMessage *message)
 {
 message−>AddString("suites", "suite/vnd.Me−my_handler"));
 BPropertyInfo prop_info(prop_list);
 message−>AddFlat("messages", &prop_info);
 return BHandler::GetSupportedSuites(message);
 }

The value returned by GetSupportedSuites() is added to message in the int32 "error" field. BHandler's version of this function adds the
universal suite "suite/vnd.Be−handler" to message then returns B_OK.

 Scripting

11

#B_OK

 BApplication
Derived from: BLooper > BHandler > BArchivable

Declared in: be/app/Application.h

Library: libbe.so

Summary

The BApplication class defines an object that represents your application, creates a connection to the App Server, and runs your app's main message
loop. An app can only create one BApplication object; the system automatically set the global be_app object to point to the BApplication object you
create.

A BApplication object's most pervasive task is to handle messages that are sent to your app, a subject that's described in detail below. But message
handling aside, you can also use your BApplication object to...

• Control the cursor. BApplication defines functions that hide and show the cursor, and set the cursor's image. See SetCursor().

• Access the window list. You can iterate through the windows that your application has created with WindowAt().

• Get information about your application. Your app's signature, executable location, and launch flags can be retrieved through GetAppInfo().
Additional informationicons, version strings, recognized file typescan be retrieved by creating an BAppFileInfo object based on your app's executable
file. BAppFileInfo is defined in the Storage Kit.

 be_app and Subclassing BApplication

Because of its importance, the BApplication object that you create is automatically assigned to the global be_app variable. Anytime you need to refer
to your BApplication objectfrom anywhere in your codeyou can use be_app instead.

Unless you're creating a very simple application, you should subclass BApplication. But be aware that the be_app variable is typed as (BApplication
*). You'll have to cast be_app when you call a function that's declared by your subclass:

 ((MyApp *)be_app)−>MyAppFunction();

 Constructing the Object and Running the Message Loop

As with all BLoopers, to use a BApplication you construct the object and then tell it to start its message loop by calling the Run() function. However,
unlike other loopers, BApplication's Run() doesn't return until the application is told to quit. And after Run() returns, you delete the objectit isn't
deleted for you.

Typically, you create your BApplication object in your main() functionit's usually the first object you create. The barest outline of a typical
main() function looks something like this:

 #include <Application.h>

 main()1
 {

2new BApplication("application/x−vnd.your−app−sig")3;

 /* Further initialization goes here −− read settings, set globals, etc. */

 be_app−>Run()4;

 /* Clean up −− write settings, etc. */

 delete be_app;
 }

1 The main() function doesn't declare argc and argv parameters (used for passing along command line arguments). If the user passes command
line arguments to your app, they'll show up in the ArgvReceived() hook function.

2 Why no pointer assignment? The constructor automatically assigns the object to be_app, so you don't have to assign it yourself.

3 The string passed to the constructor sets the application's signature. This is a precautionary measureit's better to add the signature as a resource
than to define it here (a resource signature overrides the constructor signature). Use the FileTypes app to set the signature as a resource.

4 As explained in the BLooper class, Run() is almost always called from the same thread in which you construct the BApplication object. (More
accurately, the constructor locks the object, and Run() unlocks it. Since locks are scoped to threads, the easiest thing to do is to construct and
Run() in the same thread.)

 Application Messages

After you tell your BApplication to run, its message loop begins to receive messages. In general, the messages are handled in the expected fashion:
They show up in BApplication's MessageReceived() function (or that of a designated BHandler; for more on how messages are dispatched to
handlers, see <x>).

But BApplication also recognizes a set of application messages that it handles by invoking corresponding hook functions. The hook functions are
invoked by DispatchMessage() so the application messages never show up in MessageReceived().

Overriding the hook functions that correspond to the application messages is an important part of the implementation of a BApplication subclass.

In the table below, the application messages (identified by their command constants) are listed in roughly the order your BApplication can expect to
receive them.

12

#BArchivable
Application.h
Application.summary.html
#BAppFileInfo
#BAppFileInfo

B_ARGV_RECEIVED ArgvReceived() Command line arguments are delivered through this message.

B_REFS_RECEIVED RefsReceived() Files (entry_refs) that are dropped on your app's icon, or that are double−clicked to launch
your app are delivered through this message.

B_READY_TO_RUN ReadyToRun() Invoked from within Run(), the application has finished configuring itself and is ready to
go. If you haven't already created and displayed an initial window, you should do so here.

B_APP_ACTIVATED AppActivated() The application has just become the active application, or has relinquished that status.

B_PULSE Pulse() If requested, pulse messages are sent at regular intervals by the system.

B_ABOUT_REQUESTEDAboutRequested() The user wants to see the app's About... box.

The protocols for the application messages are described <x>.

For more information on the details of when and why the hook functions are invoked, see the individual function descriptions.

A BApplication can also receive the B_QUIT_REQUESTED looper message. As explained in BLooper, B_QUIT_REQUESTED causes Quit() to be
called, contingent on the value returned by the QuitRequested() hook function. However, BApplication's implementation of Quit() is different
from BLooper's version. Don't miss it.

 Other Topics

• Locking. As a BLooper, a BApplication mustt be locked before calling certain protected functions. The BApplication locking mechanism is
inherited without modification from BLooper.

• FileTypes settings. The BApplication object represents your application at run−time. However, some of the characteristics of your
appwhether it can be launched more than once, the file types it can open, its iconare not run−time decisions.

 Hook Functions
AboutRequested()

AppActivated()

ArgvReceived()

Pulse()

ReadyToRun()

RefsReceived()

 Constructor and Destructor

 BApplication()

BApplication(const char *signature)

BApplication(const char *signature, status_t *error)

BApplication(BMessage *archive)

The constructor creates a new object, locks it, sets the global variable be_app to point to it, and establishes a connection to the Application Server.
From this point on, your app can receive messages, although it won't start processing them until you call Run(). You can also begin creating and
displaying BWindow objectseven before you call Run().

The signature constructors assign the argument as the app's application signature. The argument is ignored if a signature is already specified in a
resource or attribute of the application's executable (serious apps should always set the signature as both an attribute and a resource). The signature is a
MIME type string that must have the supertype "application". For more information on application signatures and how to set them, see <x>.

If you specify error, a pointer to a status_t, any error that occurs while constructing the BApplication will be returned in that variable. Alternately, you
can call InitCheck() to check the results. If an error is returned by the constructor, you shouldn't call Run().

The archive constructor is an implementation detail; see the BArchivable class.

 BApplication

13

#BWindow
#BArchivable

 ~BApplication()

virtual ~BApplication()

Closes and deletes the application's BWindows (and the BViews they contain), and severs the application's connection to the Application Server.

Never delete a BApplication object while it's runningwait until Run() returns. To stop a BApplication (and so cause Run() to return), send it a
B_QUIT_REQUESTED message:

 be_app−>PostMessage(B_QUIT_REQUESTED);

 Static Functions

 AppResources()

static BResources *AppResources(void)

Returns a BResources object that's configured from your application's executable file. You may read the data in the BResources object, but you're not
allowed to write it; see the BResources class for details. The BResources object belongs to the BApplication class and mustn't be freed.

You needn't have a be_app object to invoke this function.

Instantiate() see BArchivable::Instantiate()

 Member Functions

 AboutRequested()

virtual void AboutRequested(void)

Hook function that's invoked when the BApplication receives a B_ABOUT_REQUESTED message, undoubtedly because the user clicked an
About... menu item. You should implement the function to put a window on−screen that provides the user with information about the application
(version number, license restrictions, authors' names, etc).

 AppActivated()

virtual void AppActivated(bool active)

Hook function that's invoked when the application receives a B_APP_ACTIVATED message. The message is sent when the app gains or loses active
application status. The active flag tells you which way the wind blows: true means your app is now active; false means it isn't.

The user can activate an app by clicking on or unhiding one of its windows; you can activate an app programmatically by calling
BWindow::Activate() or BRoster::ActivateApp(). (With regard to the latter: This function is called only if the app has an "activatable"
windowi.e. a non−modal, non−floating window).

During launch, this function is called after ReadyToRun() (provided the app is displaying an activatable window).

"be_app"

 Archive() , see

 ArgvReceived()

 BApplication

14

#BResources
#BResources
#BResources
#BResources
#BResources
#Activate()

virtual void ArgvReceived(int32 argc, char **argv)

Hook function that's invoked when the application receives a B_ARGV_RECEIVED message. The message is sent if command line arguments are used
in launching the app from the shell, or if argv/argc values are passed to BRoster::Launch().

This function isn't called if there were no command line arguments, or if BRoster::Launch() was called without
argv/argc values.

When the app is launched from the shell, ArgvReceived()'s arguments are identical to the traditional main() arguments: The number of
command line arguments is passed as argc; the arguments themselves are passed as an array of strings in argv. The first argv string identifes the
executable file; the other strings are the command line arguments proper. For example, this...

 $ MyApp file1 file2

...produces the argv array {"./MyApp", "file1", "file2"}.

BRoster::Launch() forwards its argv and argc arguments, but adds the executable name to the front of the argv array and increments the
argc value.

Normally, the B_ARGV_RECEIVED message (if sent at all) is sent once, just before B_READY_TO_RUN is sent. However, if the user tries to
re−launch (from the command line and with arguments) an already−running app that's set to B_EXCLUSIVE_LAUNCH or B_SINGLE_LAUNCH, the
re−launch will generate a B_ARGV_RECEIVED message that's sent to the already−running image. Thus, for such apps, the
B_ARGV_RECEIVED message can show up at any time.

CountWindows() see WindowAt()

DispatchMessage() see BLooper::DispatchMessage()

 GetAppInfo()

status_t GetAppInfo(app_info *theInfo) const

Returns information about the application. This is a cover for

 be_roster>GetRunningAppInfo(be_app−>Team(), theInfo);

See BRoster::GetAppInfo() for more information.

HideCursor() see SetCursor()

IsCursorHidden() see SetCursor()

 IsLaunching()

bool IsLaunching(void) const

Returns true if the app is still launching. An app is considered to be in its launching phase until ReadyToRun() returns. Invoked from within
ReadyToRun(), IsLaunching() returns true.

MessageReceived() see BHandler::MessageReceived()

ObscureCursor() see SetCursor()

 Pulse() , SetPulseRate()

 BApplication

15

#bool

virtual void Pulse(void)

void SetPulseRate(bigtime_t rate)

Pulse() is a hook function that's called when the app receives a B_PULSE message. The message is sent once every rate microseconds, as set in
SetPulseRate() . The first Pulse() message is sent after ReadyToRun() returns. If the pulse rate is 0 (the default), the B_PULSE messages
aren't sent.

You can implement Pulse() to do whatever you want (the default version does nothing), but don't try to use it for precision timing: The pulse
granularity is no better than 100,000 microseconds.

Keep in mind that Pulse() executes in the app's message loop thread along with all other message handling functions. Your app won't receive any
Pulse() invocations while it's waiting for some other handler function (including MessageReceived()) to finish. In the meantime,
B_PULSE messages will be stacking up in the message queue; when the loop becomes "unblocked", you'll see a burst of Pulse() invocations.

Quit() see Run()

 QuitRequested()

virtual bool QuitRequested(void)

Hook function that's invoked when the app receives a B_QUIT_REQUESTED message. As described in the BLooper class (which declares this
function), the request to quit is confirmed if QuitRequested() returns true, and denied if it returns false.

In its implementation, BApplication sends BWindow::QuitRequested() to each of its BWindow objects. If they all agree to quit, the windows
are all destroyed (through BWindow::Quit()) and this QuitRequested() returns true . But if any BWindow refuses to quit, that window and
all surviving windows are saved, and this QuitRequested() returns false.

Augment this function as you will, but be sure to call the BApplication version in your implementation.

 ReadyToRun()

virtual void ReadyToRun(void)

Hook function that's called when the app receives a B_READY_TO_RUN message. The message is sent automatically during the Run() function, and
is sent after the initial B_REFS_RECEIVED and B_ARGV_RECEIVED messages (if any) have been handled. This is the only application message that
every running app is guaranteed to receive.

What you do with ReadyToRun() is up to youif your app hasn't put up a window by the time this function is called, you'll probably want to do it
here. The default version of ReadyToRun() is empty.

 RefsReceived()

virtual void RefsReceived(BMessage *message)

Hook function that's called when the app receives a B_REFS_RECEIVED message. The message is sent when the user drops a file (or files) on your
app's icon, or double clicks a file that's handled by your app. The message can arrive either at launch time, or while your app is already runninguse
IsLaunching() to tell which.

message contains a single field named "refs" that contains one or more entry_ref (B_REF_TYPE) itemsone for each file that was dropped or
double−clicked. Do with them what you will; the default implementation is empty. Typically, you would use the refs to create BEntry or BFile objects.

"Scripting Suites and Properties"

 ResolveSpecifier() , see

 Run() , Quit()

virtual thread_id Run(void)

 BApplication

16

#ControlChange(),%20SprayControlChange()
#ControlChange(),%20SprayControlChange()
#BWindow
#BWindow
#entry_ref
#B_REF_TYPE
#BEntry
#BFile

virtual void Quit(void)

These functions, inherited from BLooper, are different enough from their parent versions to warrant description:

• Run() doesn't spawn a new threadit runs the message loop in the thread that it's called from, and doesn't return until the message loop
stops.

• Quit() doesn't kill the looper threadit tells the thread to finish processing the message queue (disallowing new messages) at which point
Run() will be able to return. After so instructing the thread, Quit() returnsit doesn't wait for the message queue to empty.

• Also, Quit() doesn't delete the BApplication object. It's up to you to delete it after Run() returns. (However, Quit() does delete the
object if it's called before the message loop startsi.e. before Run() is called.)

 SetCursor() , HideCursor() , ShowCursor() , ObscureCursor() , IsCursorHidden()

void SetCursor(const void *cursor)

void SetCursor(const BCursor *cursor, bool sync = true)

void HideCursor(void)

void ShowCursor(void)

void ObscureCursor(void)

bool IsCursorHidden(void) const

Cursor functions:

• SetCursor() sets the cursor image that's used when this is the active application. You can pass one of the Be−defined cursor constants
(B_HAND_CURSOR and B_I_BEAM_CURSOR) or create your own cursor image. The cursor data format is described below.

• You can also call SetCursor() passing a BCursor object; specifying sync as true forces the Application Server to immediately
resynchronize, thereby ensuring that the cursor change takes place immediately. The default BCursors are
B_CURSOR_SYSTEM_DEFAULT for the hand cursor and B_CURSOR_I_BEAM for the I−beam text editing cursor.

• HideCursor() removes the cursor from the screen.

• ShowCursor() restores it.

• ObscureCursor() hides the cursor until the user moves the mouse.

• IsCursorHidden() returns true if the cursor is hidden (but not obscured), and false if not.

The cursor data format is described in the "Cursor Data Format" section under BCursor.

ShowCursor() see SetCursor()

 WindowAt() , CountWindows()

BWindow *WindowAt(int32 index) const

int32 CountWindows(void) const

WindowAt() returns the index 'th BWindow object in the application's window list. If index is out of range, the function returns NULL.

CountWindows() returns the number of windows in the window list.

• The windows list includes all windows explicitly created by the appwhether they're normal, floating, or modal, and whether or not they're
actually displayedbut excludes private windows created by Be classes.

• The order of windows in the list has no signficance.

• Locking the BApplication object doesn't lock the window list. If you need coordinated access to the list, you'll have to provide your own
locking mechanism that protects these functions and all BWindow construction and deletion.

 BApplication

17

#BWindow
#BWindow
#BWindow

 Global Variables

 be_app

BApplication *be_app;

be_app is the global variable that represents your BApplication object. You can refer to be_app anywhere you need a reference to the BApplication
object that you created. If you want to call a function that's declared by your BApplication subclass, you have to cast be_app to your subclass:

 ((MyApp *)be_app)−>MyAppFunction();

 be_app_messenger

BMessenger *be_app_messenger;

be_app_messenger is a global BMessenger that targets your be_app object. It's created in the BApplication constructor.

 Archived Fields

"mime_sig" B_STRING_TYPE Application signature.

 Scripting Suites and Properties

 "Name"

B_GET_PROPERTY B_DIRECT_SPECIFIER Gets the name of the application's main thread.

 "Window"

B_COUNT_PROPERTIES B_DIRECT_SPECIFIER Returns CountWindows().

Not applicable.
B_NAME_SPECIFIER,
B_INDEX_SPECIFIER,
B_REVERSE_INDEX_SPECIFIER

The message is forwarded to the specified BWindow.

 BApplication

18

#B_STRING_TYPE

 BClipboard
Derived from: none

Declared in: be/app/Clipboard.h

Library: libbe.so

Allocation: Constructor, on the stack, or use the

Summary

A BClipboard object is an interface to a clipboard, a resource that provides system−wide, temporary data storage. Clipboards are identified by name; if
two apps want to refer to the same clipboard, they simply create respective BClipboard objects with the same name:

 /* App A: This creates a clipboard named "MyClipboard". */
 BClipboard *appAclipboard = new BClipboard("MyClipboard");

 /* App B: This object refers to the clipboard already created by App A. */
 BClipboard *appBclipboard = new BClipboard("MyClipboard");

 The System Clipboard

In practice, you rarely need to construct your own BClipboard object; instead, you use the BClipboard that's created for you by your
BApplication object. This object, which you refer to through the global be_clipboard variable, accesses the default system clipboard. Data that
you write to your be_clipboard object can be read from any other app's be_clipboard. For example, the cut/copy/paste operations defined by
BTextView transfer data through the system clipboard.

To access the system clipboard without creating a BApplication object, construct a BClipboard object with the name
"system". The system clipboard is under the control of the useryou should only read or write the system clipboard as a
direct result of the user's actions. If you create your own clipboards don't name them "system".

 The Clipboard Message

To access a clipboard's data, you call functions on a BMessage that the BClipboard object hands you (through its Data() function). The
BMessage follows these conventions:

• The what value is unused.

• The data is stored in a message field. The field should be typed as B_MIME_TYPE; the MIME type that describes the data should be used
as the name of the field that holds the data (see "Writing to the Clipboard" for an example).

• If the BMessage contains more than one field, each field should present the same data in a different format. For example, the
StyledEdit app writes text data in its own format (in order to encode the fonts, colors, etc.) and also writes the data as plain ASCII text
(MIME type "text/plain").

 Writing to the Clipboard

The following annotated example shows how to write to the clipboard.

 BMessage *clip = (BMessage *)NULL;

 if (be_clipboard−>Lock()1) {
 be_clipboard−>Clear()2;
 if ((clip = be_clipboard−>Data()3) {
 clip−>AddData("text/MyFormat", B_MIME_TYPE, myText, myLength)4;
 clip−>AddData("text/plain", B_MIME_TYPE, asciiText, asciiLength)4;
 be_clipboard−>Commit()5;
 }
 be_clipboard−>Unlock()6;
 }

1 Lock() your BClipboard object. This uploads data from the clipboard into your BClipboard's local BMessage object, and prevents other threads
in your application from accessing the BClipboard's data. Note that locking does not lock the underlying clipboard dataother applications can change
the clipboard while you have your object locked.

2 Prepare the BClipboard for writing by calling Clear(). This erases the data that was uploaded from the clipboard.

3 Call Data() to get a pointer to the BClipboard's BMessage object.

4 Write the data by invoking AddData() directly on the BMessage. In the example, we write the data in two different formats.

5 Call Commit() to copy your BMessage back to the clipboard. As soon as you call Commit(), the data that you added is visible to other
clipboard clients.

6 Unlock() balances the Lock(). The BClipboard object can now be accessed by other threads in your application.

19

Clipboard.h
Clipboard.summary.html
#BTextView
#B_MIME_TYPE

If you decide that you don't want to commit your changes, you should call Revert() before you unlock.

 Reading from the Clipboard

Here we show how to read a simple string from the clipboard.

 const char *text;
 int32 textLen;
 BMessage *clip = (BMessage *)NULL;

 if (be_clipboard−>Lock()1) {
 if ((clip = be_clipboard−>Data();
 clip−>FindData("text/plain", B_MIME_TYPE,
 (const void **)&text, &textlen)2;
 be_clipboard−>Unlock()3;
 }

1 As in writing, we bracket the operation with Lock() and Unlock() . Keep in mind that Lock() uploads data from the clipboard into our
object. Any changes that are made to the clipboard (by some other application) after Lock() is called won't be seen here.

2 In this example, we only look for one hard−coded format. In a real application, you may have a list of formats that you can look for.

3 It isn't necessary to examine the clipboard data before you unlock it. The FindData() call could just as well have been performed after the
Unlock() call.

 Persistence

Inter−boot persistence: Clipboard data does not persist between bootsthe constructor provides a persistence flag, but it's currently unused.

Intra−boot persistence: Once you've created a clipboard, that clipboard will exist until you reboot your computer. For example, let's say you design an
app that creates a clipboard called "MyClip": You launch the app, write something to "MyClip", and then quit the app. The clipboardand the data that
you wrote to itwill still exist: If you relaunch your app (or any app that knows about "MyClip"), you can pick up the data by reading from the
"MyClip" clipboard.

 Constructor and Destructor

 BClipboard()

BClipboard(const char *name, bool discard = false)

Creates a new BClipboard object that refers to the name clipboard. The clipboard itself is created if a clipboard of that name doesn't already exist.

The discard flag is currently unused.

 ~BClipboard()

virtual ~BClipboard()

Destroys the BClipboard object. The clipboard itself and the data it contains are not affected by the object's destruction.

 Member Functions

 Clear() , Commit() , Revert()

status_t Clear(void)

status_t Commit(void)

status_t Revert(void)

These functions are used when you're writing data to the clipboard. Clear() prepares your BClipboard for writing. You call Clear() just before
you add new data to your clipboard message. Commit() copies your BClipboard data back to the clipboard. See "Writing to the Clipboard" for an
example of these functions.

 BClipboard

20

Revert() refreshes the BClipboard's data message by uploading it from the clipboard. The function is provided for the (rare) case where you alter
your BClipboard's data message, and then decide to back out of the change. In this case, you should call Revert() (rather than Commit()). If you
don't revert, your BClipboard's message will still contain your unwanted change, even if you unlock and then re−lock the object.

All three functions returns B_ERROR if the BClipboard isn't locked, and B_OK otherwise.

Commit() see Clear()

 Data()

BMessage *Data(void) const

Returns the BMessage object that holds the BClipboard's data, or NULL if the BClipboard isn't locked. You're expected to read and write the
BMessage directly; however, you may not free it or dispatch it like a normal BMessage. If you change the BMessage and want to write it back to the
clipboard, you have to call Commit() after you make the change.

See "The Clipboard Message" for more information.

 DataSource()

BMessenger DataSource(void) const

Returns a BMessenger that targets the BApplication object of the application that last committed data to the clipboard. The BClipboard needn't be
locked.

 LocalCount() , SystemCount()

uint32 LocalCount(void) const

uint32 SystemCount(void) const

These functions return the clipboard count. LocalCount() uses a cached count, while SystemCount() asks the Application Server for the more
accurate system counter.

 Lock() , Unlock() , IsLocked()

bool Lock(void)

void Unlock(void)

bool IsLocked(void)

Lock() uploads data from the clipboard into your BClipboard object, and locks the object so no other thread in your application can use it. You must
call Lock() before reading or writing the BClipboard. Lock() blocks if the object is already locked. It returns true if the lock was acquired, and
false if the BClipboard object was deleted while Lock() was blocked.

There's no way to tell Lock() to time out.

Unlock() unlocks the object so other threads in your application can use it.

IsLocked() hardly needs to be documented.

 BClipboard

21

#B_ERROR
#B_OK

 Name()

const char *Name(void) const

Returns the name of the clipboard. The object needn't be locked.

Revert() see Clear()

 StartWatching() , StopWatching()

status_t StartWatching(BMessenger target)

status_t StopWatching(BMessenger target)

If you want to be alerted when the clipboard changes, call StartWatching(), passing a BMessenger to be the target for the notification. When the
clipboard changes, a B_CLIPBOARD_CHANGED message will be sent to the target.

StopWatching() stops monitoring the clipboard for changes.

RETURN CODES

B_OK. No error.

• Other errors. You get the idea.

StopWatching() see StartWatching()

SystemCount() see LocalCount()

Unlock() see Lock()

 BClipboard

22

#B_CLIPBOARD_CHANGED
#B_OK

 BCursor
Derived from: public BArchivable

Declared in: be/app/Cursor.h

Library: libbe.so

Summary

You can use a BCursor to represent a mouse cursor as an object instead of as a block of pixel data; this can be more convenient in some situations.
Also, if you want to call BApplication::SetCursor() without forcing an immediate sync of the Application Server, you have to use a
BCursor.

The default BCursors are B_CURSOR_SYSTEM_DEFAULT for the hand cursor and B_CURSOR_I_BEAM for the I−beam text editing cursor.

 Cursor Data Format

• The first four bytes of cursor data give information about the cursor:

• Byte 1: Size in pixels−per−side. Cursors are always square; currently, only 16−by−16 cursors are allowed.

• Byte 2: Color depth in bits−per−pixel. Currently, only one−bit monochrome is allowed.

• Bytes 3&4: Hot spot coordinates. Given in "cursor coordinates" where (0,0) is the upper left corner of the cursor grid, byte 3 is the hot
spot's y coordinate, and byte 4 is its x coordinate. The hot spot is a single pixel that's "activated" when the user clicks the mouse. To push a
button, for example, the hot spot must be within the button's bounds.

• Next comes an array of pixel color data. Pixels are specified from left to right in rows starting at the top of the image and working
downward. The size of an array element is the depth of the image. In one−bit depth...

• the 16x16 array fits in 32 bytes.

• 1 is black and 0 is white.

• Then comes the pixel transparency bitmask, given left−to−right and top−to−bottom. 1 is opaque, 0 is transparent. Transparency only
applies to white pixelsblack pixels are always opaque.

 Constructor and Destructor

 BCursor()

BCursor(const void *cursorData)

BCursor(BMessage *archive)

Initializes the new cursor object. If you specify a non−NULL value for cursorData, the cursor is initialized with the specified cursor data.

If you specify a NULL value for cursorData, the cursor is useless; since this class doesn't currently provide a means of setting the cursor data once the
object is instantiated, you're out of luck, so why bother?

BCursor doesn't currently implement archiving, so you shouldn't use the second form.

 ~BCursor()

virtual ~BCursor()

Releases any resources used by the cursor.

 Static Functions

 Instantiate()

23

#BArchivable
Cursor.h
Cursor.summary.html

static BArchivable *Instantiate(BMessage *archive)

Not currently implemented; always returns NULL.

See also: BArchivable::Instantiate() , instantiate_object() , Archive()

 BCursor

24

#BArchivable
#instantiate_object()

 BHandler
Derived from: BArchivable

Declared in: be/app/Handler.h

Library: libbe.so

Summary

A BHandler object responds to messages that are handed to it by a BLooper. The BLooper tells the BHandler about a message by invoking the
BHandler's MessageReceived() function.

 The Handler List

To be eligible to get messages from a BLooper, a BHandler must be in the BLooper's list of eligible handlers (as explained in the BLooper class). The
list of eligible handlers is ordered; if the "first" handler doesn't want to respond to a message that it has received, it simply calls the inherited version of
MessageReceived() and the message will automatically be handed to the object's "next" handler. (System messages are not handed down the list.)
The BLooper that all these BHandlers belong to is always the last the last handler in the list (BLooper inherits from BHandler).

A BHandler's next handler assignment can be changed through SetNextHandler().

 Targets

You can designate a target BHandler for most messages. The designation is made when calling BLooper's PostMessage() function or when
constructing the BMessenger object that will send the message. Messages that a user drags and drops are targeted to the object (a BView) that controls
the part of the window where the message was dropped. The messaging mechanism eventually passes the target BHandler to DispatchMessage(),
so that the message can be delivered to its designated destination.

 Filtering

Messages can be filtered before they're dispatchedthat is, you can define a function that will look at the message before the target BHandler's hook
function is called. The filter function is associated with a BMessageFilter object, which records the criteria for calling the function.

Filters that should apply only to messages targeted to a particular BHandler are assigned to the BHandler by SetFilterList() or
AddFilter() . Filters that might apply to any message a BLooper dispatches, regardless of its target, are assigned by the parallel BLooper functions,
SetCommonFilterList() and AddCommonFilter() . See those functions and the BMessageFilter class for details.

 Notifiers and Observers

A BHandler can be a notifier. A notifier is a handler that maintains one or more states and notifies interested parties when those states change. Each
state is idenfified by a 32−bit "what" code. Interested parties, called observers, can register to monitor changes in one or more states by calling
StartWatching() and specifying the "what" code of the state they want to be notified of changes to.

This notification occurs when the BHandler calls SendNotices(); it's the handler's job to call SendNotices() whenever a state changes, to
ensure that observers are kept informed of the changes. The BHandler passes to SendNotices() a message template to be sent to the observers.

When a notification is sent, observers receive a B_OBSERVER_NOTICE_CHANGE message with an int32 field B_OBSERVE_WHICH_CHANGE that
contains the "what" code of the state that changed, and a B_OBSERVE_ORIGINAL_WHAT field that contains the "what" value that was in the
template BMessage.

 Hook Functions
MessageReceived()

 Constructor and Destructor

 BHandler()

BHandler(const char *name = NULL)

BHandler(BMessage *archive)

Initializes the BHandler by assigning it a name and registering it with the messaging system. BHandlers can also be reconstructed from a
BMessage archive.

25

#BArchivable
Handler.h
Handler.summary.html
#SendNotices()
#SendNotices()
#SendNotices()
#B_OBSERVER_NOTICE_CHANGE

 ~BHandler()

virtual ~BHandler()

Deletes any BMessageFilters assigned to the BHandler.

 Static Functions

Instantiate() see BArchivable::Instantiate()

 Member Functions

AddFilter() see SetFilterList()

"Archived Fields"

 Archive() , see

FilterList() see SetFilterList()

 GetSupportedSuites()

virtual status_t GetSupportedSuites(BMessage *message)

Implemented by derived classes to report the suites of messages and specifiers they understand. This function is called in response to either a
B_GET_PROPERTIES scripting message for the "Suites" property or a B_GET_SUPPORTED_SUITES message.

Each derived class should add the names of the suites it implements to the "suites" array of message. Each item in the array is a MIME string with the
"suite" supertype. In addition, the class should add corresponding flattened BPropertyInfo objects in the "messages" array. A typical implementation of
GetSupportedSuites() looks like:

 status_t MyHandler::GetSupportedSuites(BMessage *message)
 {
 message−>AddString("suites", "suite/vnd.Me−my_handler"));
 BPropertyInfo prop_info(prop_list);
 message−>AddFlat("messages", &prop_info);
 return BHandler::GetSupportedSuites(message);
 }

The value returned by GetSupportedSuites() is added to message in the int32 "error" field.

BHandler's version of this function adds the universal suite "suite/vnd.Be−handler" to message then returns B_OK.

 LockLooper() , LockLooperWithTimeout() , UnlockLooper()

bool LockLooper(void)

status_t LockLooperWithTimeout(bigtime_t timeout)

void UnlockLooper(void)

These are "smart" versions of BLooper's locking functions (BLooper::Lock() et. al.). The difference between the versions is that these functions
retrieve the handler's looper and lock it (or unlock it) in a pseudo−atomic operation, thus avoiding a race condition. Anytime you're tempted to write
code such as this:

 /* DON'T DO THIS */
 if (myHandler−>Looper()−>Lock()) {
 ...
 myHandler−>Looper()−>Unlock();
 }

Don't do it. Instead, do this:

 BHandler

26

#status_t
#B_OK
#bool
#status_t
#bigtime_t

 /* DO THIS INSTEAD */
 if (myHandler−>LockLooper()) {
 ...
 myHandler−>UnlockLooper();
 }

Except for an additional return value in LockLooperWithTimeout() , these functions are identical to their BLooper analogues. See to
BLooper::Lock() for details.

RETURN CODES

LockLooper() returns true if it was able to lock the looper, or if it's already locked by the calling thread, and false otherwise. If the handler
changes loopers during the call, false is returned.

LockLooperWithTimeout() returns:

• B_OK. The looper was successfully locked.

• B_TIMED_OUT. The call timed out without locking the looper.

• B_BAD_VALUE. This handler's looper is invalid.

• B_MISMATCHED_VALUES. The handler switched loopers during the call.

LockLooperWithTimeout() see LockLooper()

 Looper()

BLooper *Looper(void) const

Returns the BLooper object that the BHandler has been added to. The function returns NULL if the object hasn't been added to a BLooper. A BHandler
can be associated with only one BLooper at a time.

Note that a BLooper object automatically adds itself (as a handler) to itself (as a looper), and a BWindow automatically adds its child views. To
explicitly add a handler to a looper, you call BLooper::AddHandler().

 MessageReceived()

virtual void MessageReceived(BMessage *message)

Implemented by derived classes to respond to messages that are received by the BHandler. The default (BHandler) implementation of this function
responds only to scripting requests. It passes all other messages to the next handler by calling that object's version of MessageReceived().

A typical MessageReceived() implementation distinguishes between messages by looking at its command constant (i.e. the what field). For
example:

 void MyHandler::MessageReceived(BMessage *message)
 {
 switch (message−>what) {
 case COMMAND_ONE:
 HandleCommandOne()
 break;
 case COMMAND_TWO:
 HandleCommandTwo()
 break;
 ...
 default:

baseClass::MessageReceived(message);
 break;
 ...
 }
 }

It's essential that all unhandled messages are passed to the base class implementation of MessageReceived(), as shown here. The handler chain
model depends on it.

If the message comes to the end of the lineif it's not recognized and there is no next handlerthe BHandler version of this function sends a
B_MESSAGE_NOT_UNDERSTOOD reply to notify the message source.

Do not delete the argument message when you're done with. It doesn't belong to you.

 BHandler

27

#B_OK
#B_TIMED_OUT
#B_BAD_VALUE
#B_MISMATCHED_VALUES
#BWindow

Name() see SetName()

NextHandler() see SetNextHandler()

 ResolveSpecifier()

virtual BHandler *ResolveSpecifier(BMessage *message, int32 index,
BMessage *specifier, int32 what, const char *property)

Implemented by derived classes to determine the proper handler for a scripting message. The message is targeted to the BHandler, but the specifiers
may indicate that it should be assigned to another object. It's the job of ResolveSpecifier() to examine the current specifier (or more, if
necessary) and return the object that should either handle the message or look at the next specifier. This function is called before the message is
dispatched and before any filtering functions are called.

The first argument, message, points to the scripting message under consideration. The current specifier is passed in specifier; it will be at index
index in the specifier array of message. Finally, what contains the what data member of specifier while property contains the name of the targeted
property.

If the current BHandler is able to handle the scripting message, it should return a pointer to itself (this). If a BHandler in another BLooper is the target,
it should send the message to the BLooper and return NULL. This causes the current BLooper to stop further processing of the message. Otherwise, the
function should return a pointer to the BHandler that should handle the message, if no specifiers remain, or look at the next specifier, if any exist.
Often, ResolveSpecifier() calls PopSpecifier() before returning so the next BHandler won't examine the same specifier.

BHandler's version of ResolveSpecifier() recognizes a B_GET_PROPERTY message with a direct specifier requesting a "Messenger" for the
BHandler or the BHandler's "InternalName" (the same name that its Name() function returns). In both cases, it assigns the BHandler (this) as the
object responsible for the message.

For all other specifiers and messages, it sends a B_MESSAGE_NOT_UNDERSTOOD reply and returns NULL. The reply message has an "error" field
with B_SCRIPT_SYNTAX as the error and a "message" field with a longer textual explanation of the error.

For more information about this function and scripting in general, see the "Scripting" section near the beginning of this chapter.

See also: BMessage::AddSpecifier() , BMessage::GetCurrentSpecifier()

 SetFilterList() , FilterList() , AddFilter() , RemoveFilter()

virtual void SetFilterList(BList *list)

BList *FilterList(void) const

virtual void AddFilter(BMessageFilter *filter)

virtual bool RemoveFilter(BMessageFilter *filter)

These functions manage a list of BMessageFilter objects associated with the BHandler.

SetFilterList() assigns the BHandler a new list of filters; the list must contain pointers to instances of the BMessageFilter class or to instances
of classes that derive from BMessageFilter. The new list replaces any list of filters previously assigned. All objects in the previous list are deleted, as is
the BList that contains them. If list is NULL, the current list is removed without a replacement. FilterList() returns the current list of filters.

AddFilter() adds a filter to the end of the BHandler's list of filters. It creates the BList object if it doesn't already exist. By default, BHandlers don't
maintain a BList of filters until one is assigned or the first BMessageFilter is added. RemoveFilter() removes a filter from the list without deleting
it. It returns true if successful, and false if it can't find the specified filter in the list (or the list doesn't exist). It leaves the BList in place even after
removing the last filter.

For SetFilterList() , AddFilter() , and RemoveFilter() to work, the BHandler must be assigned to a BLooper object and the
BLooper must be locked.

See also: BLooper::SetCommonFilterList() , BLooper::Lock() , the BMessageFilter class

 SetName() , Name()

void SetName(const char *string)

const char *Name(void) const

 BHandler

28

#BList
#BList
#BList
#BList
#BList
#BList

These functions set and return the name that identifies the BHandler. The name is originally set by the constructor. SetName() assigns the BHandler
a new name, and Name() returns the current name. The string returned by Name() belongs to the BHandler object; it shouldn't be altered or freed.

See also: the BHandler constructor, BView::FindView() in the Interface Kit

 SetNextHandler() , NextHandler()

void SetNextHandler(BHandler *handler)

BHandler *NextHandler(void) const

SetNextHandler() reorders the objects in the handler chain so that handler follows this BHandler. This BHandler and handler must already be
part of the same chain, and the BLooper they belong to must be locked. The order of objects in the handler chain affects the way in−coming messages
are handled (as explained in "Inheritance and the Handler Chain". By default handlers are placed in the order that they're added (through
BLooper::AddHandler()).

NextHandler() returns this object next handler. If this object is at the end of the chain, it returns NULL.

 StartWatching() , StartWatchingAll() , StopWatching() , StopWatchingAll()

status_t StartWatching(BMessenger watcher, uint32 what)

status_t StartWatching(BHandler *watcher, uint32 what)

status_t StartWatchingAll(BMessenger watcher)

status_t StartWatchingAll(BHandller *watcher)

status_t StopWatching(BMessenger watcher, uint32 what)

status_t StopWatching(BHandler *watcher, uint32 what)

status_t StopWatchingAll(BMessenger watcher)

status_t StopWatchingAll(BHandller *watcher)

The BHandler class provides the concept of a notifier. Notifiers maintain one or more states that other entities might want to monitor changes to.
These states are identified by a 32−bit what code. Another entitya BHandler or a BMessengercan watch for changes notifiers' states. These are called
observers.

StartWatching() registers the BMessenger or BHandler specified by watcher to be notified whenever the state specified by what changes.
StartWatchingAll() registers the specified BMessenger or BHandler to be notified when any of the notifer's states change.

StartWatching() works by sending a message to the BHandler you want to observe, with a BMessenger back to the observer, so both must be
attached to a looper at the time StartWatching() is called.

StopWatching() ceases monitoring of the state what. StopWatchingAll(), by some odd coincidence, stops all monitoring by the BHandler
or BMessenger specified by watcher.

RETURN CODES

• B_OK. No error.

• B_BAD_HANDLER. The specified BHandler isn't valid.

UnlockLooper() see LockLooper()

 Archived Fields

"_name" B_STRING_TYPE The object's name (see SetName()).

 Scripting Suites and Properties

 BHandler

29

#B_OK
#B_BAD_HANDLER
#B_STRING_TYPE

 "InternalName"

B_GET_PROPERTY B_DIRECT_SPECIFIER B_STRING_TYPE

Returns the handler's name.

 "Messenger"

B_GET_PROPERTY B_DIRECT_SPECIFIER B_MESSENGER_TYPE

Returns a BMessenger for the handler.

 "Suites"

B_GET_PROPERTY B_DIRECT_SPECIFIER B_STRING_TYPE array

Returns an array of suites that the target supports, identified by name (e.g. "suite/vnd.Be−handler").

 BHandler

30

#B_STRING_TYPE
#B_MESSENGER_TYPE
#B_STRING_TYPE

 BInvoker
Derived from: none

Declared in: be/app/Invoker.h

Library: libbe.so

Summary

BInvoker is a convenience class that bundles up everything you need to create a handy message−sending package. The BInvoker contains: (a) a
BMessage, (b) a BMessenger (that identifies a target handler), and (c) an optional BHandler that handles replies. You set these ingredients, invoke
Invoke() , and off goes the message to the target. Replies are sent to the reply handler (be_app by default).

BInvoker uses BMessenger::SendMessage() to send its messages. The invocation is asynchronous, and there's no time limit on the reply.

BInvoker is mostly used as a mix−in class. A number of classes in the Interface Kitnotably BControlderive from BInvoker.

 Constructor and Destructor

 BInvoker()

BInvoker(BMessage *message , BMessenger messenger)

BInvoker(BMessage *message , const BHandler *handler, const BLooper *looper = NULL)

BInvoker(void)

Initializes the BInvoker by setting its message and its messenger.

• The object's BMessage is taken directly as messagethe object is not copied. The BInvoker takes over ownership of the BMessage that you
pass in.

• The object's BMessenger is copied from messenger, or initialized with looper and handler. See the BMessenger class for details on how
a BMessenger identifies a target.

If you want a reply handler, you have to call SetHandlerForReply() after the constructor returns. You can reset the message and messenger
through SetMessage() and SetTarget().

 ~BInvoker()

virtual ~BInvoker()

Deletes the object's BMessage.

 Member Functions

 BeginInvokeNotify() , EndInvokeNotify()

void BeginInvokeNotify(uint32 kind = B_CONTROL_INVOKED)

void EndInvokeNotify()

If for some reason you need to implement a method that emulates an InvokeNotify() call inside an Invoke() implementation, you should wrap
the invocation code in these functions. They set up and tear down an InvokeNotify() context.

Command() see SetMessage()

31

Invoker.h
Invoker.summary.html
#BControl

HandlerForReply() see SetHandlerForReply()

 Invoke() , InvokeNotify()

virtual status_t Invoke(BMessage *message = NULL)

status_t InvokeNotify(BMessage *message, uint32 kind = B_CONTROL_INVOKED)

Invoke() tells the BInvoker's messenger to send a message. If message is non−NULL, that message is sent, otherwise the object sends its default
message (i.e. the BMessage that was passed in the constructor or in SetMessage()). The message is sent asynchronously with no time limit on the
reply.

Regarding the use of the default message vs the argument, a common practice is to reserve the default message as a
template, and pass a fine−tuned copy to Invoke():

 /* Add the current system time to a copy of the default message. */
 BMessage copy(invoker.Message());
 copy.AddInt64("when", system_time());
 invoker.Invoke(©);

The InvokeNotify() function sends the message to the target, using the notification change code specified by kind. If message is NULL, nothing
gets sent to the target, but any watchers of the invoker's handler will receive their expected notifications. By default, the kind is
B_CONTROL_INVOKEDthe same kind sent by a straight Invoke().

In general, you should call InvokeNotify() instead of Invoke() in new BeOS applications that run under BeOS 5
and later. You can map old code to new like this:

Invoke() InvokeNotify(Message())

Invoke(Message()) InvokeNotify(Message())

Invoke(ModificationMessage()) InvokeNotify(ModificationMessage(), B_CONTROL_MODIFIED)

Invoke() doesn't call SendNotices() by default; you'll have to implement code to do it yourself. Here's how:

 status_t BControl::Invoke(BMessage *msg) {
 bool notify = false;
 uint32 kind = InvokeKind(¬ify);

 BMessage clone(kind);
 status_t err = B_BAD_VALUE;

 if (!msg && !notify) {
 // If no message is supplied, pull it from the BInvoker.
 // However, ONLY do so if this is not an InvokeNotify()
 // context −− otherwise, this is not the default invocation
 // message, so we don>t want it to get in the way here.
 // For example, a control may call InvokeNotify() with their
 // "modification" message... if that message isn>t set,
 // we still want to send notification to any watchers, but
 // −don>t− want to send a message through the invoker.
 msg = Message();
 }
 if (!msg) {
 // If not being watched, there is nothing to do.
 if(!IsWatched()) return err;
 } else {
 clone = *msg;
 }

 clone.AddInt64("when", system_time());
 clone.AddPointer("source", this);
 clone.AddInt32("be:value",fValue);
 clone.AddMessenger(B_NOTIFICATION_SENDER, BMessenger(this));
 if(msg) err = BInvoker::Invoke(&clone);

 // Also send invocation to any observers of this handler.
 SendNotices(kind, &clone);

 return err;
 }

 BInvoker

32

#B_CONTROL_INVOKED
#SendNotices()

RETURN CODES

• B_OK. The message was sent.

• B_BAD_VALUE. No default message, and no message argument.

• Other errors forwarded from BMessenger::SendMessage().

 InvokeKind()

uint32 InvokeKind(bool *notify = NULL)

Returns the kind passed to InvokeNotify() . This should be called from within your implementation of Invoke() if you need to determine what
kind was specified when InvokeNotify() was called. If you care whether Invoke() or InvokeNotify() was originally called, you can
specify a pointer to a bool, notify, which is set to true if InvokeNotify() was called, or false if Invoke() was called.

This lets you fetch the InvokeNotify() arguments from your Invoke() code without breaking compatibility with older applications by adding
arguments to Invoke().

InvokeNotify() see Invoke()

IsTargetLocal() see SetTarget()

Message() see SetMessage()

Messenger() see SetTarget()

 SetHandlerForReply() , HandlerForReply()

virtual status_t SetHandlerForReply(BHandler *replyHandler)

BHandler *HandlerForReply(void) const

SetHandlerForReply() sets the BHandler object that handles replies that are sent back by the target. By default (or if replyHandler is NULL),
replies are sent to the BApplication object.

HandlerForReply() returns the object set through SetHandlerForReply(). If the reply handler isn't set, this function returns NULL, it
doesn't return be_app (even though be_app will be handling the reply).

RETURN CODES

• SetHandlerForReply() always returns B_OKit doesn't check for validity.

 SetMessage() , Message() , Command()

virtual status_t SetMessage(BMessage *message)

BMessage *Message(void) const

uint32 Command(void) const

SetMessage() sets the BInvoker's default message to point to message (the message is not copied). The previous default message (if any) is
deleted; a NULL message deletes the previous message without setting a new one. The BInvoker owns the BMessage that you pass in; you mustn't
delete it yourself.

Message() returns a pointer to the default message, and Command() returns its what data member. Lacking a default message, the functions
return NULL.

RETURN CODES

• SetMessage() always returns B_OK.

 BInvoker

33

#B_OK
#B_BAD_VALUE
#B_OK
#B_OK

 SetTarget() , Target() , IsTargetLocal() , Messenger()

virtual status_t SetTarget(BMessenger messenger)

virtual status_t SetTarget(const BHandler *handler, const BLooper *looper = NULL)

BHandler *Target(BLooper **looper = NULL) const

bool IsTargetLocal(void) const

BMessenger Messenger(void) const

These functions set and query the BInvoker's target. This is the BHandler to which the object sends a message when Invoke() is called. The target is
represented by a BMessenger object; you can set the BMessenger as a copy of messenger, or initialize it with looper and handler. See the
BMessenger class for details on how a BMessenger identifies a target.

Target() returns the BHandler that's targeted by the object's messenger. If looper is non−NULL, the BLooper that owns the BHandler is returned by
reference. If the target was set as a looper's preferred handler (i.e. SetTarget(NULL, looper)), or if the target hasn't been set yet,
Target() returns NULL. The function returns NULL for both objects if the target is remote.

IsTargetLocal() returns true if the target lives within the BInvoker's application, and false if it belongs to some other app.

Messenger() returns a copy of the BMessenger object the BInvoker uses to send messages. If a target hasn't been set yet, the return will be invalid.

RETURN CODES

• B_OK. The target was successfully set.

• B_BAD_VALUE. The proposed handler doesn't belong to a BLooper.

• B_MISMATCHED_VALUES. handler doesn't belong to looper.

SetTarget() doesn't detect invalid BLoopers and BMessengers.

 SetTimeout() , Timeout()

status_t SetTimeout(bigtime_t timeout)

bigtime_t Timeout(void) const

SetTimeout() sets the timeout that will be used when sending the invocation message to the invoker's target. By default this is
B_INFINITE_TIMEOUT.

Timeout() returns the current setting for this value.

RETURN CODES

• B_OK. No error.

Target() see SetTarget()

Timeout() see SetTimeout()

 BInvoker

34

#B_OK
#B_BAD_VALUE
#B_MISMATCHED_VALUES
#B_INFINITE_TIMEOUT
#B_OK

 BLooper
Derived from: public BHandler

Declared in: be/app/Looper.h

Library: libbe.so

Summary

A BLooper object creates a "message loop" that receives messages that are sent or posted to the BLooper. The message loop runs in a separate thread
that's spawned (and told to run) when the BLooper receives a Run() call. If you're creating your own BLooper, you can invoke Run() from within
the constructor.

You tell the loop to stop by sending the BLooper a B_QUIT_REQUESTED message, which invokes the object's Quit() function. You can also call
Quit() directly, but you have to Lock() the object first (BLooper locking is explained later). Quit() deletes the BLooper for you.

The BApplication class, the most important BLooper subclass, bends the above description in a couple of ways:

• A BApplication takes over the main thread, it doesn't spawn a new one.

• You do have to delete be_app ; you can't just Quit() it.

 Messages and Handlers

You can deliver messages to a BLooper's thread by...

• Posting them directly by calling BLooper's PostMessage() function.

• Sending them through BMessenger's SendMessage() or BMessage's SendReply() function.

As messages arrive, they're added to the BLooper's BMessageQueue object. The BLooper takes messages from the queue in the order that they arrived,
and calls DispatchMessage() for each one. DispatchMessage() locks the BLooper and then hands the message to a BHandler object by
invoking the handler's MessageReceived() function. But which BHandler does the BLooper hand the message to? Here's the path:

• If an incoming message targets a specific BHandler, and if that BHandler is one of the BLooper's eligible handlers (as set through the
AddHandler() function), the BLooper uses that BHandler. (See the BMessage and BMessenger classes for instructions on how to target
a BHandler.)

• Otherwise it hands the message to its preferred handler, as set through SetPreferredHandler().

• If no preferred handler is set, the BLooper itself handles the message (its own implementation of MessageReceived() is invoked).

After the handler is finished (when its MessageReceived() returns), the BMessage is automatically deleted and the BLooper is unlocked.

 Locking

Access to many BLooper functions (and some BHandler functions) is proteced by a lock. To invoke a lock−protected functions (or groups of
functions), you must first call Lock(), and then call Unlock() when you're done. The lock is scoped to the calling thread:
Lock() /Unlock() calls can be nested within the thread. Keep in mind that each Lock() must balanced by an Unlock().

The BLooper constructor automatically locks the object. It's unlocked when Run() is invoked. This means that the Run() functionand any other
lock−protected functions that you call before you call Run()must be called from the thread that constructed the BLooper.

 Allocation

Because they delete themselves when told to quit, BLoopers can't be allocated on the stack; you have to construct them with new.

 Hook Functions
• DispatchMessage()

• QuitRequested()

 Constructor and Destructor

35

Looper.h
Looper.summary.html

 BLooper()

BLooper(const char *name = NULL,
 int32 priority = B_NORMAL_PRIORITY,
 int32 portCapacity = B_LOOPER_PORT_DEFAULT_CAPACITY)

BLooper(BMessage *archive)

Assigns the BLooper object a name and then locks it (by calling Lock()). priority is a value that describes the amount of CPU attention the message
loop will receive once it starts running, and portCapacity is the number of messages the BLooper can hold in its "message port" (this is not the
message queue, as explained below).

After you construct the BLooper, you have to tell it to Run(). Because the object is locked, Run() can only be called from the thread that
constructed the object. It's legal to invoke Run() from within a subclass implementation of the constructor.

 Priority

A set of priority values are defined in kernel/OS.h; from lowest to highest, they are:

B_NORMAL_PRIORITY For all ordinary threads, including the main thread.

B_DISPLAY_PRIORITY For threads associated with objects in the user interface, including window threads.

B_URGENT_DISPLAY_PRIORITY For interface threads that deserve more attention than ordinary windows.

B_REAL_TIME_DISPLAY_PRIORITY For threads that animate the on−screen display.

B_URGENT_PRIORITY For threads performing time−critical computations.

B_REAL_TIME_PRIORITY For threads controlling real−time processes that need unfettered access to the CPUs.

 Port Capacity

Messages that are sent to a BLooper first show up in a port (as the term is defined by the Kernel Kit), and then are moved to the BMessageQueue. The
capacity of the BMessageQueue is virtually unlimited; the capacity of the port is not. Although messages are moved from the port to the queue as
quickly as possible, the port can fill up. A full port will block subsequent message senders.

The default port capacity (100), should be sufficient for most apps, but you can fiddle with it through the portCapacity argument.

 ~BLooper()

virtual ~BLooper()

Frees the message queue and all pending messages and deletes the message loop. BHandlers that have been added to the BLooper are not deleted, but
BMessageFilter objects added as common filters are

In general, you should never delete your BLooper objects: With the exception of the BApplication object, BLoopers are destroyed by the
Quit() function.

If you create a BLooper−derived class that uses multiple inheritance, make sure the first class your mixin class inherits
from is BLooper; otherwise, you'll crash when you try to close the window. This happens because of an interaction
between the window thread how C++ deletes objects of a multiply−inherited class. In other words:

 class myClass : public BLooper, public OtherClass {
 ...
 };

is safe, while

 class myClass : public OtherClass, public BLooper {
 ...
 };

is not.

 BLooper

36

#B_NORMAL_PRIORITY
#B_DISPLAY_PRIORITY
#B_REAL_TIME_DISPLAY_PRIORITY
#B_URGENT_PRIORITY
#B_REAL_TIME_PRIORITY

 Static Functions

 LooperForThread()

static BLooper *LooperForThread(thread_id thread)

Returns the BLooper object that spawned the specified thread, or NULL if the thread doesn't belong to a BLooper.

 Member Functions

 AddCommonFilterList() , RemoveCommonFilterList() , SetCommonFilterList() , CommonFilterList()

virtual void AddCommonFilter(BMessageFilter *filter)

virtual bool RemoveCommonFilter(BMessageFilter *filter)

virtual void SetCommonFilterList(BList *filters)

BList *CommonFilterList(void) const

For all but CommonFilterList(), the BLooper must be locked.

These functions manage the BLooper's list of BMessageFilters. Message filters are objects that screen in−coming messages. In the case of BLooper,
each message is passed through all filters in the list before it's passed on to DispatchMessage(). The order of the filters in the list is determinate.
See the BMessageFilter class for details on how message filters work.

AddCommonFilter() adds filter to the end of the filter list (creating a BList container if necessary).

RemoveCommonFilter() removes filter from the list, but doesn't free the filter. It returns true if successful, and false if it can't find the
specified filter.

SetCommonFilterList() deletes the current filter list and its contents, and replaces it with filters. All elements in filters must be
BMessageFilter pointers. The BLooper takes ownership of all objects in filters, as well as filters itself. If filters is NULL, the current list is deleted
without a replacement.

CommonFilterList() returns a pointer to the current list. You can examine the list but you shouldn't modify or delete it.

 AddHandler() , RemoveHandler() , HandlerAt() , CountHandlers() , IndexOf()

void AddHandler(BHandler *handler)

bool RemoveHandler(BHandler *handler)

BHandler *HandlerAt(int32 index) const

int32 CountHandlers(void) const

int32 IndexOf(BHandler *handler) const

AddHandler() adds handler to the BLooper's list of BHandler objects, and RemoveHandler() removes it. Only BHandlers that have been
added to the list are eligible to respond to the messages the BLooper dispatches.

AddHandler() fails if the handler already belongs to a BLooper; a BHandler can belong to no more than one BLooper at a time. It can change its
affiliation from time to time, but must be removed from one BLooper before it can be added to another. RemoveHandler() returns true if it
succeeds in removing the BHandler from the BLooper, and false if not or if the handler doesn't belong to the BLooper in the first place.

AddHandler() also calls the handler 's SetNextHandler() function to assign it the BLooper as its default next handler.

 BLooper

37

#bool
#BList
#BList
#BList

RemoveHandler() calls the same function to set the handler's next handler to NULL.

HandlerAt() returns the BHandler object currently located at index in the BLooper's list of eligible handlers, or NULL if the index is out of range.
Indices begin at 0 and there are no gaps in the list. CountHandlers() returns the number of objects currently in the list; the count should always be
at least 1, since the list automatically includes the BLooper itself. IndexOf() returns the index of the specified handler, or B_ERROR if that object
isn't in the list.

For any of these functions to work, the BLooper must be locked.

See also: BHandler::Looper() , BHandler::SetNextHandler() , PostMessage() , the BMessenger class

Archive() see BArchivable::Archive()

CommonFilterList() see AddCommonFilterList()

CountHandlers() see AddHandler()

CountLockRequests() see LockingThread()

CountLocks() see LockingThread()

 CurrentMessage() , DetachCurrentMessage()

BMessage *CurrentMessage(void) const

BMessage *DetachCurrentMessage(void)

The message that a BLooper passes to its handler(s) is called the "current message." These functions access the current message; they're meaningless
(they return NULL) when called from outside the message processing loop.

CurrentMessage() simply returns a pointer to the current message without affecting the BMessage object itself. This is particularly useful to
functions that respond to system messages (such as MouseDown() and ScreenChanged()), but that aren't sent the full BMessage object that
initiated the response.

DetachCurrentMessage() removes the current message from the message queue and passes ownership of it to the caller; deleting the message is
the caller's responsibility. This is useful if you want to delay the response to the message without tying up the BLooper. But be carefulif the message
sender is waiting for a synchronous reply, detaching the message and holding on to it will block the sender.

DetachCurrentMessage() see CurrentMessage()

 DispatchMessage()

virtual void DispatchMessage(BMessage *message , BHandler *target)

DispatchMessage() is the BLooper's central message−processing function. It's called automatically as messages arrive in the looper's queue, one
invocation per message. You never invoke DispatchMessage() yourself.

The default implementation passes message to handler by invoking the latter's MessageReceived():

 target−>MessageReceived(message);

The only exception is where message.what is B_QUIT_REQUESTED and handler is the looper itself; in this case, the object invokes its own
QuitRequested() function.

You can override this function to dispatch the messages that your own application defines or recognizes. All unhandled messages should be passed to
the base class version, as demonstrated below:

 void MyLooper::DispatchMessage(BMessage *msg, BHandler *target)
 {
 switch (msg−>what) {
 case MY_MESSAGE1:
 ...
 break;
 case MY_MESSAGE2:
 ...
 break;
 default:

baseClass::DispatchMessage(msg, target);

 BLooper

38

#B_ERROR
#MouseDown()
#ScreenChanged()

 break;
 }
 }

Also, note that you mustn't delete message; it's deleted for you..

The system locks the BLooper before calling DispatchMessage() and keeps it locked for the duration of the function.

HandlerAt() see AddHandler()

IndexOf() see AddHandler()

IsLocked() see LockingThread()

 Lock() , LockWithTimeout() , Unlock()

bool Lock(void)

status_t LockWithTimeout(bigtime_t timeout)

void Unlock(void)

Lock() locks the BLooper. Locks are held within the context of a thread; while a BLooper is locked, no other thread can invoke its most important
functions (AddHandler() , DispatchMessage(), etc.)

If the looper is already locked (by some other thread), Lock() blocks until the looper is unlocked. To set a timeout for the block, use
LockWithTimeout() instead. timeout is measured in microseconds; if it's 0, the function returns immediately (with or without the lock); if it's
B_INFINITE_TIMEOUT, it blocks without limit.

Unlock() unlocks a locked looper. It can only be called by the thread that currently holds the lock.

Calls to Lock() /LockWithTimeout() and Unlock() can be nested, but locking and unlocking must always be balanced. A single
Unlock() will not undo a series of Lock()'s.

RETURN CODES

Lock() returns true if it was able to lock the looper, or if it's already locked by the calling thread, and false otherwise.

LockWithTimeout() returns:

• B_OK. The looper was successfully locked.

• B_TIMED_OUT. The call timed out without locking the looper.

• B_BAD_VALUE. This looper was deleted while the function was blocked.

 LockingThread() , IsLocked() , CountLocks() , CountLockRequests() , Sem()

thread_id LockingThread(void) const

bool IsLocked(void) const

int32 CountLocks(void) const

int32 CountLockRequests(void) const

sem_id Sem(void) const

These functions may be useful while debugging a BLooper.

LockingThread() returns the thread that currently has the BLooper locked, or 1 if the BLooper isn't locked.

IsLocked() returns true if the calling thread currently has the BLooper locked (if it's the locking thread) and false if not (if some other thread is
the locking thread or the BLooper isn't locked).

CountLocks() returns the number of times the locking thread has locked the BLooperthe number of Lock() (or LockWithTimeout()) calls
that have not yet been balanced by matching Unlock() calls.

CountLockRequests() returns the number of threads currently trying to lock the BLooper. The count includes the thread that currently has the

 BLooper

39

#bool
#status_t
#bigtime_t
#B_INFINITE_TIMEOUT
#B_OK
#B_TIMED_OUT
#B_BAD_VALUE

lock plus all threads currently waiting to acquire it.

Sem() returns the sem_id for the semaphore that the BLooper uses to implement the locking mechanism.

See also: Lock()

LockWithTimeout() see Lock()

 MessageReceived()

virtual void MessageReceived(BMessage *message)

Simply calls the inherited function. For the current release, the BLooper implementation of this function does nothing of importance.

See also: BHandler::MessageReceived()

 MessageQueue()

BMessageQueue *MessageQueue(void) const

Returns the queue that holds messages delivered to the BLooper's thread. You rarely need to examine the message queue directly; it's made available
so you can cheat fate by looking ahead.

See also: the BMessageQueue class

 PostMessage()

status_t PostMessage(BMessage *message)

status_t PostMessage(uint32 command)

status_t PostMessage(BMessage *message,
BHandler *handler,
BHandler *replyHandler = NULL)

status_t PostMessage(uint32 command,
BHandler *handler,
BHandler *replyHandler = NULL)

PostMessage() is similar to BMessenger::SendMessage() . The BMessenger version is preferred (it's a bit safer
than PostMessage()).

Places a message at the far end of the BLooper's message queue. The message will be processed by DispatchMessage() when it comes to the
head of the queue.

The message can be a full BMessage object (message), or just a command constant (command). In the former case, the message is copied and the
caller retains ownership of the argument, which can be deleted as soon as PostMessage() returns. In the latter case, a BMessage is created (and
deleted) for you.

handler is the designated handler for the message, and must be part of this BLooper's handler chain. If handler is (literally) NULL, the designated
handler is the BLooper's preferred handler at the time DispatchMessage() is called. In the versions of PostMessage() that don't have a
handler argument, the designated handler is the BLooper object itself.

Replies to the message are delivered to replyHandler. If a replyHandler isn't specified, replies are sent to be_app_messenger.

A BLooper should never post a message to itself from within its own message loop thread.

 BLooper

40

#sem_id
#status_t
#status_t
#Integer%20Types
#status_t
#status_t
#Integer%20Types

RETURN CODES

• B_OK. The message was successfully posted.

• B_MISMATCHED_VALUES. handler doesn't belong to this BLooper.

• Other errors. See the return values for BMessenger::SendMessage().

PreferredHandler() see SetPreferredHandler()

 Quit()

virtual void Quit(void)

Shuts down the message loop (if it's running), and deletes the BLooper. The object must be locked.

When Quit() is called from the BLooper's thread, the message loop is immediately stopped and any messages in the message queue are deleted
(without being processed). Note that, in this case, Quit() doesn't return since the calling thread is dead.

When called from another thread, Quit() waits until all messages currently in the queue have been handled before it kills the message loop. It returns
after the BLooper has been deleted.

 QuitRequested()

virtual bool QuitRequested(void)

Hook function that's invoked when the BLooper receives a B_QUIT_REQUESTED message. You never invoke this function directly. Derived classes
implement this function to return true if it's okay to quit this BLooper, and false if not. Note that this function does not actually quit the objectthe
code that handles the B_QUIT_REQUESTED message does that.

BLooper's default implementation of QuitRequested() always returns true.

RemoveCommonFilter() see AddCommonFilterList()

 Run()

virtual thread_id Run(void)

Spawns the message loop thread and starts it running. Run() expects the BLooper to be locked (once only!) when it's called; it unlocks the object
before it returns. Keep in mind that a BLooper is locked when it's constructed.

Calling Run() on a BLooper that's already running will dump you into the debugger.

RETURN CODES

• Positive values. The thread was successfully spawned and started; this is the thread_id for the thread.

• Thread errors. See spawn_thread() and resume_thread().

• Port errors. See create_port().

 BLooper

41

#B_OK
#B_MISMATCHED_VALUES
#bool
#thread_id
#spawn_thread()
#resume_thread()
#create_port()

AddCommonFilter()

 SetPreferredHandler() , PreferredHandler()

void SetPreferredHandler(BHandlerAddCommonFilter() *handler) const

BHandler *PreferredHandler(void)

These functions set and return the BLooper's preferred handlerthe BHandler object that should handle messages not specifically targetted to another
BHandler.

To designate the current preferred handlerwhatever object that may beas the target of a message, pass NULL for the target handler to
PostMessage() or to the BMessenger constructor.

Posting or sending messages to the preferred handler can be useful. For example, in the Interface Kit, BWindow objects name the current focus view
as the preferred handler. This makes it possible for other objectssuch as BMenuItems and BButtonsto target messages to the BView that's currently in
focus, without knowing what view that might be. For example, by posting its messages to the window's preferred handler, a Cut menu item can make
sure that it always acts on whatever view contains the current selection. See the chapter on the Interface Kit for information on windows, views, and
the role of the focus view.

By default, BLoopers don't have a preferred handler; until one is set, PreferredHandler() returns NULL. Note however, that messages targeted
to the preferred handler are dispatched to the BLooper whenever the preferred handler is NULL. In other words, the BLooper acts as default preferred
handler, even though the default is formally NULL.

See also: BControl::SetTarget() and BMenuItem::SetTarget() in the Interface Kit, PostMessage()

 Thread() , Team()

thread_id Thread(void) const

team_id Team(void) const

These functions identify the thread that runs the message loop and the team to which it belongs. Thread() returns B_ERROR if Run() hasn't yet
been called to spawn the thread and begin the loop. Team() always returns the application's team_id.

Unlock() see Lock()

 Constants

 B_LOOPER_PORT_DEFAULT_CAPACITY

#define B_LOOPER_PORT_DEFAULT_CAPACITY 100

The default capacity of the port that holds incoming messages before they're placed in the BLooper's BMessageQueue. The capacity is set in the
BLooper constructor.

 BLooper

42

#BWindow
#BView
#B_ERROR
#team_id

 BMessage
Derived from: none

Declared in: be/app/Message.h

Library: libbe.so

Allocation: new, static, or automatic

Summary

A BMessage is a bundle of structured information. Every BMessage contains a command constant and some number of data fields.

• The command constant is an int32 value that describes, roughly, the purpose of the BMessage. It's stored as the public what data
member. You always set and examine the what value directlyyou don't need to call a function. (As a convenience, you can set the
command constant when you create your BMessage object.)

• The data fields are name−type−value triplets. A field is be primarily identified by name, but you can look for fields by name, type, or a
combination of the two. The type is encoded as a constant (B_INT32_TYPE, B_STRING_TYPE, etc), and is meant to describe the type of
value that the field holds. A single field can have only one name and one type, but can contain an array of values. Individual values in a
field are accessible by index.

Neither the command constant nor the data fields are mandatory. You can create a BMessage that has data but no command, or that only has a
command. However, creating a BMessage that has neither is pointless.

 Preparatory Reading

BMessages are used throughout the kits to send data (or notifications) to another threadpossibly in another application. To understand how BMessages
fit into the messaging system, see "Messaging".

The BMessage class also contributes a number of functions that help define the scripting system. See "Scripting" for an introduction to this system.

BMessages are also used by a number of classes (BClipboard, BArchivable, and others) for their ability to store data.

 Types of Functions

The BMessage class defines five types of functions:

• Data field functions. These functions either set or retrieve the value of a data field. See AddData(), FindData()),
ReplaceData() , and RemoveName(). .

• Info functions. These functions retrieve information about the state and contents of the BMessage. See IsSystem() and GetInfo().

• Messaging functions. These functions are part of the messaging system. .A smaller set of functions reports on the status of a received
message. For example, IsSourceWaiting() tells whether the message sender is waiting for a reply, WasDropped() says whether it
was dragged and dropped, and DropPoint() says where it was dropped. SendReply()

• Scripting functions, such as AddSpecifier() and PopSpecifier().

• Flattening functions. The data in a BMessage can be flattened. See Flatten().

 BMessage Ownership

The documentation for the functions that accept or pass back a BMessage object should tell you who's responsible for deleting the object. Most
functions that accept a BMessage argument copy the object, leaving the caller with the responsibility for deleting the argument. The exceptionsi.e.
BMessage−accepting functions that take over ownership of the objectare listed below:

Functions that return a BMessage to you usually don't give up ownership; in general, you don't delete the BMessages that are passed to you. The
exceptionsfunctions that expect the caller to take over ownership of a passed−back BMessageare listed below:

 Data Members
uint32 what
A coded constant that captures what the message is about.

 Constructor and Destructor

 BMessage()

BMessage(uint32 command)

43

Message.h
Message.summary.html
#Integer%20Types
#B_INT32_TYPE
#B_STRING_TYPE
#BArchivable

BMessage(const BMessage &message)

BMessage(void)

Creates a new BMessage object that has the given command constant, or that's a copy of another BMessage. If it's a copy, the new object contains the
same command constant and data fields as message.

See also: BLooper::DetachCurrentMessage()

 ~BMessage()

virtual ~BMessage()

Frees all memory allocated to hold message data. If the message sender is expecting a reply but hasn't received one, a default reply (with
B_NO_REPLY as the what data member) is sent before the message is destroyed.

The system retains ownership of the messages it delivers to you. Each message loop routinely deletes delivered BMessages after the application is
finished responding to them.

 Member Functions

 AddData() , AddBool() , AddInt8() , AddInt16() , AddInt32() , AddInt64() , AddFloat() , AddDouble() ,
 AddString() , AddPoint() , AddRect() , AddRef() , AddMessage() , AddMessenger() , AddPointer() ,
 AddFlat()

status_t AddData(const char *name, type_code type,
 const void *data,
 ssize_t numBytes,
 bool fixedSize = true,
 int32 numItems = 1)

status_t AddBool(const char *name, bool aBool)

status_t AddInt8(const char *name, int8 anInt8)

status_t AddInt16(const char *name, int16 anInt16)

status_t AddInt32(const char *name, int32 anInt32)

status_t AddInt64(const char *name, int64 anInt64)

status_t AddFloat(const char *name, float aFloat)

status_t AddDouble(const char *name, double aDouble)

status_t AddString(const char *name, const char *string)

status_t AddString(const char *name , const BString &string)

status_t AddPoint(const char *name , BPoint point)

status_t AddRect(const char *name, BRect rect)

status_t AddRef(const char *name, const entry_ref *ref)

status_t AddMessage(const char *name, const BMessage *message)

status_t AddMessenger(const char *name, BMessenger messenger)

status_t AddPointer(const char *name, const void *pointer)

status_t AddFlat(const char *name , BFlattenable *object, int32 numItems = 1)

These functions add data to the field named name and assign a data type to the field. Field names can be no longer than 255 characters. If more than
one item of data is added under the same name, the BMessage creates an array of data for that name. Each time you add another value (to the same

 BMessage

44

#BString
#BPoint
#BRect
#BFlattenable

name), the value is added to the end of the arrayyou can't add a value at a specific index. A given field can only store one type of data.

AddData() copies numBytes of data into the field, and assigns the data a type code. It copies whatever the data pointer points to. For example, if
you want to add a string of characters to the message, data should be the string pointer (char *). If you want to add only the string pointer, not the
characters themselves, data should be a pointer to the pointer (char **). The assigned type must be a specific data type; it should not be
B_ANY_TYPE..

When you call AddData() to place the first item in an array under a new name, you can provide it with two arguments, fixedSize and numItems,
that will improve the object's efficiency. If the fixedSize flag is true, each item in the array must have the same number of bytes; if the flag is
false, items can vary in size. numItems tells the object to pre−allocate storage for some number of items. This isn't a limityou can add more than
numItems to the field.

Most of the other functions are variants of AddData() that hard−code the field's type. For example, AddFloat() assigns the type
B_FLOAT_TYPE; AddBool() assigns B_BOOL_TYPE, and so on.

AddString() , like AddData() , takes a pointer to the data it adds, or you can use a BString object. The string must be null−terminated; the null
character is counted and copied into the message. Similarly, AddRef() adds the pointed to entry_ref structure to the message (and the
variable−length name that's one of the elements of the structure); AddMessage() adds one BMessage to another.

The other functions are simply passed the data directly. For example, AddInt32() takes an int32 or uint32 and AddMessenger() takes a
BMessenger object, whereas AddData() would be passed a pointer to an int32 and a pointer to a BMessenger. AddPointer() adds only the
pointer it's passed, not the data it points to. To accomplish the same thing, AddData() would take a pointer to the pointer. (The pointer will be valid
only locally; it won't be useful to a remote destination.)

AddFlat() flattens an object (by calling its Flatten() function) and adds the flat data to the message. It calls the object's
TypeCode() function to learn the type code it should associate with the data. Objects that are added through AddFlat() must inherit from
BFlattenable (defined in the Support Kit).

You can also provide a numItems hint to AddFlat() when you call it to set up a new array. AddFlat() calls the object's
IsFixedSize() function to discover whether all items in the array will be the same size.

These functions return B_ERROR if the data is too massive to be added to the message, B_BAD_TYPE if the data can't be added to an existing array
because it's the wrong type, B_NO_MEMORY if the BMessage can't get enough memory to hold the data, and B_BAD_VALUE if the proposed
name for the data is longer than 255 bytes. If all goes well, they return B_OK.

There's no limit on the number of named fields a message can contain or on the size of a field's data. However, since the search is linear, combing
through a very long list of names to find a particular piece of data may be inefficient. Also, because of the amount of data that must be moved, an
extremely large message can slow the delivery mechanism. It's sometimes better to put some of the information in a common location (a file, a private
clipboard, a shared area of memory) and just refer to it in the message.

See also: FindData() , GetInfo()

 AddSpecifier()

status_t AddSpecifier(const BMessage *message)

status_t AddSpecifier(const char *property)

status_t AddSpecifier(const char *property, int32 index)

status_t AddSpecifier(const char *property, int32 index, int32 range)

status_t AddSpecifier(const char *property, const char *name)

Adds a specifier to the specifier stack. There are several variations of this method. The first adds the specifier message to the specifier stack. The
other methods add a specifier targeting the property property, with specifier constants B_DIRECT_SPECIFIER, B_INDEX_SPECIFIER,
B_RANGE_SPECIFIER, and B_NAME_SPECIFIER, respectively. For all other specifiers, you must construct the specifier separately and then call
AddSpecifier() on the message. For more information about specifiers, see the "Scripting" section near the beginning of this chapter.

Specifiers are stored in a data array named "specifiers." However, since AddSpecifier() also sets the notion of the current specifier, specifiers
should always be added to a scripting message with this method rather than with AddMessage().

AddSpecifier() returns B_OK if it's able to add the specifier to the BMessage and an error code, generally only B_NO_MEMORY to indicate that it
has run out of memory, if not.

See also: GetCurrentSpecifier() , HasSpecifiers() , PopSpecifier()

 CountNames()

int32 CountNames(type_code type) const

Returns the number of named data fields in the BMessage that store data of the specified type. An array of information held under a single name
counts as one field; each name is counted only once, no matter how many data items are stored under that name.

 BMessage

45

#B_ANY_TYPE
#B_FLOAT_TYPE
#B_BOOL_TYPE
#BString
#entry_ref
#BFlattenable
#B_ERROR
#B_BAD_TYPE
#B_NO_MEMORY
#B_BAD_VALUE
#B_OK
#B_OK
#B_NO_MEMORY

If type is B_ANY_TYPE, this function counts all named fields. If type is a specific type, it counts only fields that store data registered as that type.

See also: GetInfo()

DropPoint() see WasDropped()

 FindData() , FindBool() , FintInt8() , FindInt16() , FindInt32() , FindInt64() , FindFloat() , FindDouble() ,
 FindString() , FindPoint() , FindRect() , FindRef() , FindMessage() , FindMessenger() , FindPointer() ,
 FindFlat()

status_t FindData(const char *name,
 type_code type,
 int32 index,
 const void **data,
 ssize_t *numBytes) const

status_t FindData(const char *name,
 type_code type,
 const void **data,
 ssize_t *numBytes) const

status_t FindBool(const char *name,
 int32 index,
 bool *aBool) const

status_t FindBool(const char *name, bool *aBool) const

status_t FindInt8(const char *name,
 int32 index,
 int8 *anInt8) const

status_t FindInt8(const char *name,
 int8 *anInt8) const

status_t FindInt16(const char *name,
 int32 index,
 int16 *anInt16) const

status_t FindInt16(const char *name, int16 *anInt16) const

status_t FindInt32(const char *name,
 int32 index,
 int32 *anInt32) const

status_t FindInt32(const char *name, int32 *anInt32) const

status_t FindInt64(const char *name,
 int32 index,
 int64 *anInt64) const

status_t FindInt64(const char *name, int64 *anInt64) const

status_t FindFloat(const char *name,
 int32 index,
 float *aFloat) const

status_t FindFloat(const char *name, float *aFloat) const

status_t FindDouble(const char *name,
 int32 index,
 double *aDouble) const

status_t FindDouble(const char *name, double *aDouble) const

status_t FindString(const char *name,
 int32 index,
 const char **string) const

status_t FindString(const char *name, const char **string) const

status_t FindString(const char *name , BString *string) const

 BMessage

46

#B_ANY_TYPE
#BString

status_t FindString(const char *name, int32 index , BString *string) const

status_t FindPoint(const char *name,
 int32 index,

BPoint *point) const

status_t FindPoint(const char *name , BPoint *point) const

status_t FindRect(const char *name,
 int32 index,

BRect *rect) const

status_t FindRect(const char *name , BRect *rect) const

status_t FindRef(const char *name,
 int32 index,
 entry_ref *ref) const

status_t FindRef(const char *name, entry_ref *ref) const

status_t FindMessage(const char *name,
 int32 index,
 BMessage *message) const

status_t FindMessage(const char *name, BMessage *message) const

status_t FindMessenger(const char *name,
 int32 index,

BMessenger *messenger) const

status_t FindMessenger(const char *name , BMessenger *messenger) const

status_t FindPointer(const char *name,
 int32 index,
 void **pointer) const

status_t FindPointer(const char *name, void **pointer) const

status_t FindFlat(const char *name,
 int32 index,

BFlattenable *object) const

status_t FindFlat(const char *name , BFlattenable *object) const

These functions retrieve data from the BMessage. Each looks for data stored under the specified name. If more than one data item has the same name,
an index can be provided to tell the function which item in the name array it should find. Indices begin at 0. If an index isn't provided, the function
will find the first, or only, item in the array.

In all cases except FindData() and FindString(), the data that's retrieved from the BMessage is copied into the
reference argument; the caller is responsible for freeing the copied data). For FindData() and the non−BString version
of FindString(), a pointer to the data is returned; the BMessage retains ownership of the actual data and will delete the
data when the object itself is deleted.

FindData() places, in *data, a pointer to the requested data item. The size of the item in bytes is written to numBytes. If type is B_ANY_TYPE, it
provides a pointer to the data no matter what type it actually is. But if type is a specific data type, it provides the pointer only if the name field holds
data of that particular type.

The other functions are specialized versions of FindData(). They match the corresponding Add...() functions and search for named data of a
particular type, as described below:

FindBool() a bool B_BOOL_TYPE

FindInt8() an int8 or uint8 B_INT8_TYPE

FindInt16() an int16 or uint16 B_INT16_TYPE

FindInt32() an int32 or uint32 B_INT32_TYPE

 BMessage

47

#BString
#BPoint
#BPoint
#BRect
#BRect
#BFlattenable
#BFlattenable
#B_ANY_TYPE
#bool
#B_BOOL_TYPE
#FindInt8()
#Integer%20Types
#Integer%20Types
#B_INT8_TYPE
#Integer%20Types
#Integer%20Types
#B_INT16_TYPE
#Integer%20Types
#Integer%20Types
#B_INT32_TYPE

FindInt64() an int64 or uint64 B_INT64_TYPE

FindFloat() a float B_FLOAT_TYPE

FindDouble) a double B_DOUBLE_TYPE

FindString() a character string B_STRING_TYPE

FindPoint() a BPoint object B_POINT_TYPE

FindRect() a BRect object B_RECT_TYPE

FindRef() an entry_ref B_REF_TYPE

FindMessage() a BMessage object B_MESSAGE_TYPE

FindMessenger() a BMessenger object B_MESSENGER_TYPE

FindPointer() a pointer to anything B_POINTER_TYPE

The other type−specific functions retrieve the requested data item from the message by copying it to the variable referred to by the last argument; you
get the data, not just a pointer to it. For example, FindMessenger() assigns the BMessenger it finds in the message to the messenger object,
whereas FindData() would provide only a pointer to a BMessenger. FindPointer() puts the found pointer in the void* variable that
pointer refers to; FindData(), as illustrated above, would provide a pointer to the pointer. (If the message was delivered from a remote source,
pointers retrieved from the message won't be valid.)

FindRef() retrieves an entry_ref structure; the data that's used to reconstitute the structure may have been added as an entry_ref (through
AddRef()), or as a flattened BPath object (AddFlat()).

FindFlat() assigns the object stored in the BMessage to the object passed as an argumentit calls the object's Unflatten() function and passes
it the flat data from the messageprovided that the two objects have compatible types. The argument object's AllowsTypeCode() function must
return true when tested with the type code stored in the message; if not, FindFlat() fails and returns B_BAD_VALUE.

If these functions can't find any data associated with name, they return a B_NAME_NOT_FOUND error. If they can't find name data of the requested
type (or the type the function returns), they return B_BAD_TYPE. If the index is out of range, they return B_BAD_INDEX. You can rely on the values
they retrieve only if they return B_OK and the data was correctly recorded when it was added to the message.

When they fail, FindData() and FindString() provide NULL pointers. FindRect() hands you an invalid rectangle and
FindMessenger() an invalid BMessenger. Most of the other functions set the data values to 0, which may be indistinguishable from valid values.

Finding a data item doesn't remove it from the BMessage.

(Several functions, such as FindRect() and FindInt32(), have versions that return the found value directly. These versions don't report errors
and may not be supported in the future.)

See also: GetInfo() , AddData()

 Flatten() , Unflatten() , FlattenedSize()

status_t Flatten(BDataIO *object, ssize_t *numBytes = NULL) const

status_t Flatten(char *address, ssize_t numBytes = NULL) const

status_t Unflatten(BDataIO *object)

status_t Unflatten(const char *address)

ssize_t FlattenedSize(void) const

These functions write the BMessage and the data it contains to a "flat" (untyped) buffer of bytes, and reconstruct a BMessage object from such a
buffer.

If passed a BDataIO object (including a BFile), Flatten() calls the object's Write() function to write the message data. If passed the address of
a buffer, it begins writing at the start of the buffer. FlattenedSize() returns the number of bytes you must provide in the buffer to hold the
flattened object. Flatten() places the number of bytes actually written in the variable that its numBytes argument refers to.

Unflatten() empties the BMessage of any information it may happen to contain, then initializes the object from data read from the buffer. If
passed a BDataIO object, it calls the object's Read() function to read the message data. If passed a buffer address, it begins reading at the start of
the buffer. It's up to the caller to make sure that Unflatten() reads data that Flatten() wrote and that pointers are positioned correctly.

 BMessage

48

#Integer%20Types
#Integer%20Types
#B_INT64_TYPE
#B_FLOAT_TYPE
#B_DOUBLE_TYPE
#B_STRING_TYPE
#BPoint
#B_POINT_TYPE
#BRect
#B_RECT_TYPE
#entry_ref
#B_REF_TYPE
#B_MESSAGE_TYPE
#B_MESSENGER_TYPE
#B_POINTER_TYPE
#entry_ref
#entry_ref
#BPath
#B_BAD_VALUE
#B_NAME_NOT_FOUND
#B_BAD_TYPE
#B_BAD_INDEX
#B_OK
#Write()
#Read()

Flatten() returns any errors encountered when writing the data, or B_OK if there is no error.

If it doesn't recognize the data in the buffer as being a flattened object or there's a failure in reading the data, Unflatten() returns B_BAD_VALUE.
If it doesn't have adequate memory to recreate the whole message, it returns B_NO_MEMORY. Otherwise, it returns B_OK.

See also: the BDataIO class in the Support Kit

 GetCurrentSpecifier() , PopSpecifier()

status_t GetCurrentSpecifier(int32 *index,
 BMessage *specifier = NULL,
 int32 *what = NULL,
 const char **property = NULL) const

status_t PopSpecifier(void)

GetCurrentSpecifier() unpacks the current specifier in the BMessage, the one at the top of the specifier stack; PopSpecifier() changes
the notion of which specifier is current, by popping the current one from the stack.

These functions aid in implementing a class−specific version of BHandler's ResolveSpecifier() functionthe first gets the specifier that needs to
be resolved, and the second pops it from the stack after it is resolved. You can also call them to examine relevant specifiers when handling a message
that targets an object property (such as B_GET_PROPERTY).

A scripting BMessage keeps specifiers in a data array named "specifiers"; each specifier is itself a BMessage, but one with a special structure and
purpose in the scripting system. See the "Scripting" section near the beginning of this chapter for an overview of the system and the place of specifiers
in it.

The specifiers in a message are ordered and, until PopSpecifier() is called, the one that was added lastthe one with the greatest indexis the
current specifier. PopSpecifier() merely decrements the index that picks the current specifier; it doesn't delete anything from the BMessage.

GetCurrentSpecifier() puts the index of the current specifier in the variable that its first argument, index, refers to. If other arguments are
provided, it makes the specifier BMessage a copy of the current specifier. It also extracts two pieces of information from the specifier: It places the
what data member of the specifier in the what variable and a pointer to the property name in the property variable. These last two output arguments
won't be valid if the specifier argument is NULL.

Both functions fail if the BMessage doesn't contain specifiers. In addition, GetCurrentSpecifier() fails if it can't find data in the BMessage for
its specifier and property arguments, and PopSpecifier() fails if the BMessage isn't one that has been delivered to you after being processed
through a message loop. When it fails, GetCurrentSpecifier() returns B_BAD_SCRIPT_SYNTAX, but PopSpecifier() returns
B_BAD_VALUE. On success, both functions return B_OK.

See also: AddSpecifier() , HasSpecifiers() , BHandler::ResolveSpecifier()

 GetInfo()

status_t GetInfo(const char *name,
 type_code *typeFound,
 int32 *countFound = NULL) const

status_t GetInfo(const char *name,
 type_code *typeFound,
 bool *fixedSize) const

status_t GetInfo(type_code type, int32 index,
 char **nameFound,
 type_code *typeFound,
 int32 *countFound = NULL) const

Provides information about the data fields stored in the BMessage.

When passed a name that matches a name within the BMessage, GetInfo() places the type code for data stored under that name in the variable
referred to by typeFound and writes the number of data items with that name into the variable referred to by countFound. It then returns B_OK. If it
can't find a name field within the BMessage, it sets the countFound variable to 0, and returns B_NAME_NOT_FOUND (without modifying the
typeFound variable).

When the fixedSize argument is specified, the bool referenced by fixedSize is set to true if all items in the array specified by name must be the
same size, and false if the items can be of different sizes (see AddData()).

When passed a type and an index, GetInfo() looks only at fields that store data of the requested type and provides information about the field at
the requested index. Indices begin at 0 and are type specific. For example, if the requested type is B_DOUBLE_TYPE and the BMessage contains a
total of three named fields that store double data, the first field would be at index 0, the second at 1, and the third at 2no matter what other types of
data actually separate them in the BMessage, and no matter how many data items each field contains. (Note that the index in this case ranges over
fields, each with a different name, not over the data items within a particular named field.) If the requested type is B_ANY_TYPE, this function looks
at all fields and gets information about the one at index whatever its type.

 BMessage

49

#B_OK
#B_BAD_VALUE
#B_NO_MEMORY
#B_OK
#B_BAD_SCRIPT_SYNTAX
#B_BAD_VALUE
#B_OK
#B_OK
#B_NAME_NOT_FOUND
#B_DOUBLE_TYPE
#B_ANY_TYPE

If successful in finding data of the type requested at index, GetInfo() returns B_OK and provides information about the data through the last three
arguments:

• It places a pointer to the name of the data field in the variable referred to by nameFound.

• It puts the code for the type of data the field contains in the variable referred to by typeFound. This will be the same as the type requested,
unless the requested type is B_ANY_TYPE, in which case typeFound will be the actual type stored under the name.

• It records the number of data items stored within the field in the variable referred to by countFound.

If GetInfo() can't find data of the requested type at index, it sets the countFound variable to 0, and returns B_BAD_TYPE. If the index is out of
range, it returns B_BAD_INDEX.

This version of GetInfo() can be used to iterate through all the BMessage's data. For example:

 char *name;
 uint32 type;
 int32 count;

 for (int32 i = 0;
 msg−>GetInfo(B_ANY_TYPE, i, &name, &type, &count) == B_OK;
 i++) {
 . . .
 }

If the index is incremented from 0 in this way, all data of the requested type will have been read when GetInfo() returns B_NAME_NOT_FOUND. If
the requested type is B_ANY_TYPE, as shown above, it will reveal the name and type of every field in the BMessage.

See also: HasData() , AddData() , FindData()

 HasSpecifiers()

bool HasSpecifiers(void) const

Returns true if the BMessage has specifiers added by an AddSpecifier() function, and false if not.

See also: AddSpecifier() , GetCurrentSpecifier()

IsEmpty() see MakeEmpty()

IsReply() see WasDelivered()

IsSourceRemote() see WasDelivered()

IsSourceWaiting() see WasDelivered()

 IsSystem()

bool IsSystem(void) const

Returns true if the what data member of the BMessage object identifies it as a system−defined message, and false if not.

 MakeEmpty() , IsEmpty()

status_t MakeEmpty(void)

bool IsEmpty(void) const

MakeEmpty() removes and frees all data that has been added to the BMessage, without altering the what constant. It returns B_OK, unless the
message can't be altered (as it can't if it's being dragged), in which case it returns B_ERROR.

IsEmpty() returns true if the BMessage has no data (whether or not it was emptied by MakeEmpty()), and false if it has some.

See also: RemoveName()

 BMessage

50

#B_OK
#B_ANY_TYPE
#B_BAD_TYPE
#B_BAD_INDEX
#B_NAME_NOT_FOUND
#B_ANY_TYPE
#HasData()
#B_OK
#B_ERROR

Previous() see WasDelivered()

 PrintToStream()

void PrintToStream(void) const

Prints information about the BMessage to the standard output stream (stdout). Each field of named data is reported in the following format,

 #entry name, type = type, count = count

where name is the name that the data is registered under, type is the constant that indicates what type of data it is, and count is the number of data items
in the named array.

 RemoveName() , RemoveData()

status_t RemoveName(const char *name)

status_t RemoveData(const char *name, int32 index = 0)

RemoveName() removes all data entered in the BMessage under name and the name itself. RemoveData() removes the single item of data at
index in the name array. If the array has just one data item, it removes the array and name just as RemoveName() would.

Both functions free the memory that was allocated to hold the data, and return B_OK when successful. However, if there's no data in the BMessage
under name, they return a B_NAME_NOT_FOUND error. If message data can be read but can't be changed (as it can't for a message that's being
dragged), they both return B_ERROR. If the index is out of range, RemoveData() returns B_BAD_INDEX (the index is too high) or
B_BAD_VALUE (the value passed is a negative number).

See also: MakeEmpty()

 ReplaceData() , ReplaceBool() , ReplaceInt8() , ReplaceInt16() , ReplaceInt32() , ReplaceInt64() ,
 ReplaceFloat() , ReplaceDouble() , ReplaceString() , ReplacePoint() , ReplaceRect() , ReplaceRef() ,
 ReplaceMessage() , ReplaceMessenger() , ReplacePointer() , ReplaceFlat()

status_t ReplaceData(const char *name,
 type_code type,
 const void *data,
 ssize_t numBytes)

status_t ReplaceData(const char *name,
 type_code type,
 int32 index,
 const void *data,
 ssize_t numBytes)

status_t ReplaceBool(const char *name, bool aBool)

status_t ReplaceBool(const char *name,
 int32 index,
 bool aBool)

status_t ReplaceInt8(const char *name, int8 anInt8)

status_t ReplaceInt8(const char *name,
 int32 index,
 int8 anInt8)

status_t ReplaceInt16(const char *name, int16 anInt16)

status_t ReplaceInt16(const char *name,
 int32 index,
 int16 anInt16)

status_t ReplaceInt32(const char *name, long anInt32)

status_t ReplaceInt32(const char *name,

 BMessage

51

#B_OK
#B_NAME_NOT_FOUND
#B_ERROR
#B_BAD_INDEX
#B_BAD_VALUE

 int32 index,
 int32 anInt32)

status_t ReplaceInt64(const char *name, int64 anInt64)

status_t ReplaceInt64(const char *name,
 int32 index,
 int64 anInt64)

status_t ReplaceFloat(const char *name, float aFloat)

status_t ReplaceFloat(const char *name,
 int32 index,
 float aFloat)

status_t ReplaceDouble(const char *name, double aDouble)

status_t ReplaceDouble(const char *name,
 int32 index,
 double aDouble)

status_t ReplaceString(const char *name, const char *string)

status_t ReplaceString(const char *name,
 int32 index,
 const char *string)

status_t FindString(const char *name , BString &string)

status_t FindString(const char *name, int32 index , BString &string)

status_t ReplacePoint(const char *name , BPoint point)

status_t ReplacePoint(const char *name,
 int32 index,

BPoint point)

status_t ReplaceRect(const char *name , BRect rect)

status_t ReplaceRect(const char *name,
 int32 index,

BRect rect)

status_t ReplaceRef(const char *name, entry_ref *ref)

status_t ReplaceRef(const char *name,
 int32 index,
 entry_ref *ref)

status_t ReplaceMessage(const char *name, BMessage *message)

status_t ReplaceMessage(const char *name,
 int32 index,
 BMessage *message)

status_t ReplaceMessenger(const char *name , BMessenger messenger)

status_t ReplaceMessenger(const char *name,
 int32 index,

BMessengermessenger)

status_t ReplacePointer(const char *name, const void *pointer)

status_t ReplacePointer(const char *name,
 int32 index,
 const void *pointer)

status_t ReplaceFlat(const char *name , BFlattenable *object)

status_t ReplaceFlat(const char *name,
 int32 index,

BFlattenable *object)

These functions replace a data item in the name field with another item passed as an argument. If an index is provided, they replace the item in the

 BMessage

52

#BString
#BString
#BPoint
#BPoint
#BRect
#BRect
#BFlattenable
#BFlattenable

name array at that index; if an index isn't mentioned, they replace the first (or only) item stored under name. If an index is provided but it's out of
range, the replacement fails.

ReplaceData() replaces an item in the name field with numBytes of data, but only if the type code that's specified for the data matches the type
of data that's already stored in the field. The type must be specific; it can't be B_ANY_TYPE.

FindFlat() replaces a flattened object with another object, provided that the type reported by the argument object (by its TypeCode() function)
matches the type recorded for the item in the message. If not, it returns B_BAD_VALUE.

The other functions are simplified versions of ReplaceData(). They each handle the specific type of data declared for their last arguments. They
succeed if this type matches the type of data already in the name field, and fail if it does not. The new data is added precisely as the counterpart
Add...() function would add it.

If successful, all these functions return B_OK. If unsuccessful, they return an error codeB_ERROR if the message is read−only (as it is while the
message is being dragged), B_BAD_INDEX if the index is out of range, B_NAME_NOT_FOUND if the name field doesn't exist, or B_BAD_TYPE if
the field doesn't contain data of the specified type.

See also: AddData()

 ReturnAddress()

BMessenger ReturnAddress(void)

Returns a BMessenger object that can be used to reply to the BMessage. Calling the BMessenger's SendMessage() function is equivalent to calling
SendReply(), except that the return message won't be marked as a reply. If a reply isn't allowed (if the BMessage wasn't delivered), the returned
BMessenger will be invalid.

If you want to use the ReturnAddress() BMessenger to send a synchronous reply, you must do so before the BMessage is deleted and a default
reply is sent.

See also: SendReply() , WasDelivered()

 SendReply()

status_t SendReply(BMessage *message,
 BMessage *reply,
 bigtime_t sendTimeout = B_INFINITE_TIMEOUT,
 bigtime_t replyTimeout = B_INFINITE_TIMEOUT)

status_t SendReply(BMessage *message,
BHandler *replyHandler = NULL,

 bigtime_t sendTimeout = B_INFINITE_TIMEOUT)

status_t SendReply(uint32 command, BMessage *reply)

status_t SendReply(uint32 command , BHandler *replyHandler = NULL)

Sends a reply message back to the sender of the BMessage (in the case of a synchronous reply) or to a target BHandler (in the case of an
asynchronous reply). Whether the reply is synchronous or asynchronous depends on how the BMessage that's sending the reply was itself sent:

• The reply is delivered synchronously if the message sender is waiting for one to arrive. The function that sent the BMessage doesn't return
until it receives the reply (or a timeout expires). If an expected reply has not been sent by the time the BMessage object is deleted, a default
B_NO_REPLY message is returned to the sender. If a reply is sent after the sender gave up waiting for it to arrive, the reply
message disappears into the bowels of the system.

• The reply is delivered asynchronously if the message sender isn't waiting for a reply. In this case, the sending function designates a target
BHandler and BLooper for any replies that might be sent, then returns immediately after putting the BMessage in the pipeline. Posted
messages and messages that are dragged and dropped are also eligible for asynchronous replies.

SendReply() works only for BMessage objects that have been processed through a message loop and delivered to you. The caller retains ownership
of the reply message passed to SendReply(); it can be deleted (or left to die on the stack) after the function returns.

SendReply() sends a messagea reply message, to be sure, but a message nonetheless. It behaves exactly like the other message−sending function,
BMessenger's SendMessage():

• By passing it a reply argument, you can ask for a synchronous reply to the reply message it sends. It won't return until it receives the reply.

• By supplying a replyHandler argument, you can arrange for an expected asynchronous reply. If a specific target isn't specified, the
BApplication object will handle the reply if one is sent.

By default, SendReply() doesn't return until the reply message is delivered (placed in the BLooper's port queue). It's possible, in some
circumstances, for the receiving port queue to be full, in which case SendReply() will block until a slot becomes free. However, you can limit how
long SendReply() will wait to deliver the message before it gives up and returns. The sendTimeout argument is the number of microseconds you
give the function to do its work. If the time limit is exceeded, the function fails and returns an error (B_TIMED_OUT).

 BMessage

53

#B_ANY_TYPE
#B_BAD_VALUE
#B_OK
#B_ERROR
#B_BAD_INDEX
#B_NAME_NOT_FOUND
#B_BAD_TYPE
#B_TIMED_OUT

When asking for a synchronous reply, separate sendTimeout and replyTimeout limits can be set for sending the message and receiving the reply.
There is no time limit if a timeout value is set to B_INFINITE_TIMEOUTas it is by default. The function won't block at all if the timeout is set to 0.

If a command is passed rather than a message, SendReply() constructs the reply BMessage, initializes its what data member with the
command constant, and sends it just like any other reply. The command versions of this function have infinite timeouts; they block until the message
is delivered and, if requested, a synchronous reply is received.

This function returns B_OK if the reply is successfully sent. If there's a problem in sending the message, it returns the same sort of error code as
BMessenger's SendMessage(). It may also report a reply−specific problem. The more informative return values are as follows:

B_BAD_REPLY Attempting to reply to a message that hasn't been delivered yet.

B_DUPLICATE_REPLY Sending a reply after one has already been sent and delivered.

B_BAD_THREAD_ID Sending a reply to a destination thread that no longer exists.

B_BAD_PORT_ID Sending a reply to a BLooper and port that no longer exist.

B_TIMED_OUT Taking longer than the specified time limit to deliver a reply message or to receive a synchronous reply to the reply.

If you want to delay sending a reply and keep the BMessage object beyond the time it's scheduled to be deleted, you may be able to detach it from the
message loop. See DetachCurrentMessage() in the BLooper class.

See also: BMessenger::SendMessage() , BLooper::DetachCurrentMessage(), Error , ReturnAddress()

Unflatten() see Flatten()

 WasDelivered() , IsSourceRemote() , IsSourceWaiting() , IsReply() , Previous()

bool WasDelivered(void) const

bool IsSourceRemote(void) const

bool IsSourceWaiting(void) const

bool IsReply(void) const

const BMessage *Previous(void) const

These functions can help if you're engaged in an exchange of messages or managing an ongoing communication.

WasDelivered() indicates whether it's possible to send a reply to a message. It returns true for a BMessage that was posted, sent, or droppedthat
is, one that has been processed through a message loopand false for a message that has not yet been delivered by any means.

IsSourceRemote() returns true if the message had its source in another application, and false if the source is local or the message hasn't been
delivered yet.

IsSourceWaiting() returns true if the message source is waiting for a synchronous reply, and false if not. The source thread can request and
wait for a reply when calling either BMessenger's SendMessage() or BMessage's SendReply() function.

IsReply() returns true if the BMessage is a reply to a previous message (if it was sent by the SendReply() function), and false if not.

Previous() returns the previous messagethe message to which the current BMessage is a reply. It works only for a BMessage that's received as an
asynchronous reply to a previous message. A synchronous reply is received in the context of the previous message, so it's not necessary to call a
function to get it. But when an asynchronous reply is received, the context of the original message is lost; this function can provide it.
Previous() returns NULL if the BMessage isn't an asynchronous reply to another message.

See also: BMessenger::SendMessage() , SendReply() , ReturnAddress()

 WasDropped() , DropPoint()

bool WasDropped(void) const

BPoint DropPoint(BPoint *offset = NULL) const

WasDropped() returns true if the user delivered the BMessage by dragging and dropping it, and false if the message was posted or sent in

 BMessage

54

#B_INFINITE_TIMEOUT
#B_OK
#B_BAD_REPLY
#B_DUPLICATE_REPLY
#B_BAD_THREAD_ID
#B_BAD_PORT_ID
#B_TIMED_OUT
#BPoint
#BPoint

application code or if it hasn't yet been delivered at all.

DropPoint() reports the point where the cursor was located when the message was dropped (when the user released the mouse button). It directly
returns the point in the screen coordinate system and, if an offset argument is provided, returns it by reference in coordinates based on the image or
rectangle the user dragged. The offset assumes a coordinate system with (0.0, 0.0) at the left top corner of the dragged rectangle or image.

Since any value can be a valid coordinate, DropPoint() produces reliable results only if WasDropped() returns true.

See also: BView::DragMessage()

 Operators

 = (assignment)

BMessage &operator =(const BMessage&)

Assigns one BMessage object to another. After the assignment, the two objects are duplicates of each other without shared data.

 new

void *operator new(size_t numBytes)

Allocates memory for a BMessage object, or takes the memory from a previously allocated cache. The caching mechanism is an efficient way of
managing memory for objects that are created frequently and used for short periods of time, as BMessages typically are.

 delete

void operator delete(void *memory, size_t numBytes)

Frees memory allocated by the BMessage version of new, which may mean restoring the memory to the cache.

 BMessage

55

 BMessageFilter
Derived from: none

Declared in: be/app/MessageFilter.h

Library: libbe.so

Allocation: Constructor only

Summary

A BMessageFilter is a message−screening function that you "attach" to a BLooper or BHandler. The message filter sees messages just before they're
dispatched (i.e. just before BLooper::DispatchMessage()), and can modify or reject the message, change the message's designated handler, or
whatever else it wants to dothe implementation of the filter function isn't restricted.

To define a message filter, you have to provide a message−filtering function. You do this by implementing the Filter() hook function in a
BMessageFilter subclass, or by supplying a filter_hook function to the BMessageFilter constructor. Only one filter function per object is called. If
you implement Filter() and provide a filter_hook function, the filter_hook will win.

To attach a message filter to a looper, call BLooper::AddCommonFilter() . To add it to a handler, call BHandler::AddFilter(). Looper
filters see all incoming messages; handler filters see only those messages that are targetted for that particular handler.

A BLooper or BHandler can have more than one message filter. Furthermore, a looper can have two sets of filters: a looper set and a handler set (keep
in mind that BLooper is derived from BHandler). Looper filters are applied before handler filters.

A BMessageFilter object can be assigned to only one BHandler or BLooper at a time.

The BMessageFilter class is intended to be used as part of the system−defined messaging system. If you try to use one
outside this system, your results may not be what you expect.

 Hook Functions
Filter()

 Constructor and Destructor

 BMessageFilter()

BMessageFilter(message_delivery delivery,
message_source source,
uint32 command,
filter_hook filter = NULL)

BMessageFilter(message_delivery delivery,
message_source source,
filter_hook filter = NULL)

BMessageFilter(uint32 command,
filter_hook filter = NULL)

BMessageFilter(const BMessageFilter &object)

BMessageFilter(const BMessageFilter *object)

Creates and returns a new BMessageFilter. The first three arguments define the types of messages that the object wants to see:

• delivery specifies how the message must arrive: drag−and−drop (B_DROPPED_DELIVERY), programmatically
(B_PROGRAMMED_DELIVERY), or either (B_ANY_DELIVERY). The default is B_ANY_DELIVERY.

• source specifes whether the sender of the message must be local vis−a−vis this app (B_LOCAL_SOURCE), remote
(B_REMOTE_SOURCE), or either (B_ANY_SOURCE). The default is B_ANY_SOURCE.

• command is a command constant. If supplied, the what value of the incoming message must match this value.

Messages that don't fit the definition won't be sent to the object's filter function.

56

MessageFilter.h
MessageFilter.summary.html
#Integer%20Types
#Integer%20Types

The filter argument is a pointer to a filter_hook function. This is the function that's invoked when a message needs to be examined (see
filter_hook for the protocol). You don't have to supply a filter_hook function; instead, you can implement BMessageFilter's
Filter() function in a subclass.

For more information, refer to the description of the member Filter() function.

 ~BMessageFilter()

virtual ~BMessageFilter()

Does nothing.

 Member Functions

 Command() , FiltersAnyCommand()

uint32 Command(void) const

bool FiltersAnyCommand(void) const

Command() returns the command constant (the BMessage what value) that an arriving message must match for the filter to apply.
FiltersAnyCommand() returns true if the filter applies to all messages, and false if it's limited to a specific command.

Because all command constants are valid, including negative numbers and 0, Command() returns a reliable result only if
FiltersAnyCommand() returns false.

 Filter()

virtual filter_result Filter(BMessage *message , BHandler **target)

Implemented by derived classes to examine an arriving message just before it's dispatched. The first two arguments are the message that's being
considered, and the proposed BHandler target. You can alter the contents of the message, and alter or even replace the handler. If you replace the
handler, the new handler must belong to the same looper as the original. The new handler is given an opportunity to filter the message before it's
dispatched.

The return value must be one of these two values:

• B_DISPATCH_MESSAGE. The message and handler are passed (by the caller) to the looper's DispatchMessage() function.

• B_SKIP_MESSAGE. The message goes no furtherit's immediately thrown away by the caller.

The default version of this function returns B_DISPATCH_MESSAGE.

It's possible to call your Filter() function yourself (i.e. outside the message−passing mechanism), but keep in mind that it's the caller's
responsibility to interpret the return value.

Rather than implement the Filter() function, you can supply the BMessageFilter with a filter_hook callback when you construct the object. If
you do both, the filter_hook (and not Filter()) will be invoked when the object is asked to examine a message.

FiltersAnyCommand() see Command()

 Looper()

BLooper *Looper(void) const

Returns the BLooper whose messages this object filters, or NULL if the BMessageFilter hasn't yet been assigned to a BHandler or BLooper. To attach
a BMessageFilter to a looper or handler, use BLooper::AddCommonFilter() or BHandler::AddFilter().

 BMessageFilter

57

#Integer%20Types
#bool

 MessageDelivery() , MessageSource()

message_delivery MessageDelivery(void) const

message_source MessageSource(void) const

These functions return constants, set when the BMessageFilter object was constructed, that describe the categories of messages that can be filtered.
MessageDelivery() returns a constant that specifies how the message must be delivered (B_DROPPED_DELIVERY,
B_PROGRAMMED_DELIVERY, or B_ANY_DELIVERY). MessageSource() returns how the source of the message is constrained
(B_LOCAL_SOURCE, B_REMOTE_SOURCE, or B_ANY_SOURCE).

 Operators

 = (copy)

BMessageFilter &operator=(const BMessageFilter&)

Copies the filtering criteria and filter_hook pointer (if any) from the right−side object into the left−side object.

 Constants and Defined Types

 filter_hook

filter_result (*filter_hook)(BMessage *message,
BHandler **target,
BMessageFilter *messageFilter)

filter_hook defines the protocol for message−filtering functions. The first two arguments are the message that's being considered, and the
proposed BHandler target. You can alter the contents of the message, and alter or even replace the handler. If you replace the handler, the new handler
must belong to the same looper as the original. The new handler is given an opportunity to filter the message before it's dispatched.

messageFilter is a pointer to the object on whose behalf this function is being called; you mustn't delete this object. More than one BMessageFilter
can use the same filter_hook function.

The return value must be one of these two values:

• B_DISPATCH_MESSAGE. The message and handler are passed (by the caller) to the looper's DispatchMessage() function.

• B_SKIP_MESSAGE. The message goes no furtherit's immediately thrown away by the caller.

It's possible to call your filter function yourself (i.e. outside the message−passing mechanism), but keep in mind that it's the caller's responsibility to
interpret the return value.

You supply a BMessageFilter with a filter_hook function when you constuct the object. Alternatively, you can subclass BMessageFilter and
provide an implementation of Filter() . If you do both, the filter_hook (and not Filter()) will be invoked when the object is asked to
examine a message.

 message_source

 message_delivery

 filter_result

 BMessageFilter

58

 BMessageQueue
Derived from: none

Declared in: be/app/MessageQueue.h

Library: libbe.so

Summary

The BMessageQueue class completes the implementation of BLooper by providing a first−in/first−out stack in which the looper can place in−coming
BMessages. In general, the message dispatching mechanism of BLooper should suffice. However, if you ever need to manipulate a BMessage queue
directly, you can do so.

 Constructor and Destructor

 BMessageQueue()

BMessageQueue(void)

Creates an empty BMessageQueue object.

 ~BMessageQueue()

virtual ~BMessageQueue()

Deletes all the objects in the queue and all the data structures used to manage the queue.

 Member Functions

 AddMessage() , RemoveMessage()

void AddMessage(BMessage *message)

void RemoveMessage(BMessage *message)

AddMessage() adds message to the far end of the queue. RemoveMessage() removes a particular message from the queue and deletes it.

 CountMessages() , IsEmpty()

int32 CountMessages(void) const

bool IsEmpty(void) const

CountMessages() returns the number of messages currently in the queue.

IsEmpty() returns true if the object doesn't contain any messages, and false otherwise.

 FindMessage()

BMessage *FindMessage(int32 index) const

BMessage *FindMessage(uint32 what, int32 index = 0) const

59

MessageQueue.h
MessageQueue.summary.html

FindMessage() returns a pointer to the index 'th BMessage in the queue, where index 0 signifies the message that's been in the queue the longest.
The second version lets you specify a what field value; in this case, only messages that match the what argument are counted. If no message matches
the criteria, the functions return NULL.

The message is not removed from the message queue.

IsEmpty() see CountMessages()

 Lock() , Unlock()

bool Lock(void)

void Unlock(void)

These functions lock and unlock the BMessageQueue, so that another thread won't alter the contents of the queue while it's being read.
Lock() doesn't return until it has the queue locked; it always returns true. Unlock() releases the lock so that someone else can lock it. Calls to
these functions can be nested.

See also: BLooper::Lock()

 NextMessage()

BMessage *NextMessage(void)

Removes and returns the oldest message from the queue. If the queue is empty, the function returns NULL.

See also: FindMessage()

RemoveMessage() see AddMessage()

Unlock() see Lock()

 BMessageQueue

60

 BMessageRunner
Derived from: (none)

Declared in: be/app/MessageRunner.h

Library: libbe.so

Allocation: Constructor only

Summary

The BMessageRunner class provides a handy mechanism for automatically sending an arbitrary message to a BMessenger at specified intervals. The
application that creates the BMessageRunner can specify the message, the BMessenger to send the message to, how often to send the message, and
how many times it should be sent.

The system roster handles actually dispatching the messages to the appropriate BMessengers at the desired time intervals; this class simply acts as an
intermediary through which your application asks the roster to schedule sending the messages.

 Constructor and Destructor

 BMessageRunner()

BMessageRunner(BMessenger target , const BMessage *message,
 bigtime_t interval, int32 count = −1)

BMessageRunner(BMessenger target , const BMessage *message,
 bigtime_t interval, int32 count , BMessenger replyTo)

Tells the roster to send the specified message to the target BMessenger every interval microseconds. The message will be sent count times (if
count is −1, the message will be sent forever, or until the BMessageRunner is reconfigured or deleted).

The second form of the constructor lets the application specify, in replyTo, the BMessenger to which replies to the message should be sent.

The BMessageRunner can be reconfigured (to change the interval or count) by calling SetInterval() and SetCount().

After constructing a BMessageRunner, you should call InitCheck() to ensure that the object was created properly.

 ~BMessageRunner()

virtual ~BMessageRunner()

Asks the roster to stop sending the message.

 Member Functions

 GetInfo()

status_t GetInfo(bigtime_t *interval, int32 *count) const

GetInfo() returns in interval the time in microseconds that will pass between messages being sent, and in count the number of times the message
will be sent.

RETURN CODES

B_OK. Information returned successfully.

• B_NAME_NOT_FOUND. The roster returned invalid information about the BMessenger.

• B_BAD_VALUE. The roster returned invalid information about the BMessenger.

• Other errors. In general, getting an error back from this function is a bad thing.

61

MessageRunner.h
MessageRunner.summary.html
#B_OK
#B_NAME_NOT_FOUND
#B_BAD_VALUE

 InitCheck()

status_t InitCheck(void) const

InitCheck() returns a result code indicating B_OK if the BMessageRunner constructor executed sucessfully, or some other value if an error
occurred setting up the object. You should call this immediately after creating a BMessageRunner, and shouldn't use the object if this function returns
anything but B_OK.

 SetCount() , SetInterval()

status_t SetCount(int32 count)

status_t SetInterval(bigtime_t interval)

SetCount() sets the number of times the BMessageRunner will send the message. If you want the message to be sent forever (until the object is
deleted or SetCount() is called again), specify −1.

SetInterval() sets the number of microseconds that will pass between messages being sent.

 BMessageRunner

62

#B_OK
#B_OK

 BMessenger
Derived from: none

Declared in: be/app/Messenger.h

Library: libbe.so

Allocation: Stack or constructor

Summary

A BMessenger represents and sends messages to a message target, where the target is a BLooper and, optionally, a specific BHandler within that
looper. The target can live in the same application as the BMessenger (a local target), or it can live in some other application (a remote target).

BMessenger's most significant function is SendMessage(), which sends its argument BMessage to the target.

For a local target, SendMessage() is roughly equivalent, in terms of efficiency, to posting a message directly to the
BMessenger's target (i.e BLooper::PostMessage()).

The global be_app_messenger BMessenger pointer, which targets be_app's main message loop, is automatically initialized for you when you
create your BApplication object. You can use it wherever BMessengers are called for.

 Constructor and Destructor

 BMessenger()

BMessenger(const BHandler *handler,
 const BLooper *looper = NULL,
 status_t *error = NULL)

BMessenger(const char *signature,
 team_id team = 1,
 status_t *error = NULL)

BMessenger(const BMessenger &messenger)

BMessenger(void)

Creates a new BMessenger and sets its target to a local looper/handler, to the (running) application identified by signature or team, or to the target
of some other messenger.

• Looper/handler. To target a looper, supply a looper and pass a NULL handler. When the messenger sends a message, the message will be
handled by looper's preferred handler. If you want the message to be sent to a specific handler within a looper, supply a handler and pass a
NULL looper. The handler must already be attached to a looper, and can't switch loopers after this BMessenger is constructed.

• Signature or team. If you supply a signature but leave team as 1, the messenger targets an app with that signature. (The app must already
be running; in the case of multiple instances of a running app, the exact instance is indeterminate) If you supply a team but no signature,
you target exactly that team, regardless of signature. By supplying both a team and a signature, you can specify a specific instance of an
app. In this case, team must be an app that has the proper signature.

Messages sent to a remote target are received and handled by the remote application's BApplication object.

The BMessenger doesn't own its target.

RETURN CODES

The constructor places an error code in error (if provided).

• B_OK. The target was properly set.

• B_BAD_VALUE. The application identified by signature couldn't be found, or both handler and looper are invalid.

• B_BAD_TEAM_ID. Invalid team.

• B_MISMATCHED_VALUES. team isn't a signature app, or handler is associated with a BLooper other than looper.

• B_BAD_HANDLER. handler isn't associated with a BLooper (

63

Messenger.h
Messenger.summary.html
#B_OK
#B_BAD_VALUE
#B_BAD_TEAM_ID
#B_MISMATCHED_VALUES
#B_BAD_HANDLER

 ~BMessenger()

~BMessenger()

Frees the BMessenger; the target isn't affected.

 Member Functions

IsTargetLocal() see Target()

 IsValid()

bool IsValid(void) const

Returns true if the target looper, whether local or remote, still exists.

This function doesn't tell you whether the looper is actually ready to receive messages, or whether the handler (if it was
specified in the constructor) exists. In other words, a valid BMessenger is no guarantee that a message will actually get to
the target.

 LockTarget() , LockTargetWithTimeout()

bool LockTarget(void) const

status_t LockTargetWithTimeout(bigtime_t timeout) const

These functions apply to local targets only.

These functions attempt to lock the target looper in the manner of the similarly named BLooper functions (see BLooper::LockTarget()). In
addition to the error codes reported there, these functions return false and B_BAD_VALUE (respectively) if the target isn't local, or if the looper is
otherwise invalid.

 SendMessage()

status_t SendMessage(BMessage *message,
BMessage *reply,

 bigtime_t deliveryTimeout = B_INFINITE_TIMEOUT,
 bigtime_t replyTimeout = B_INFINITE_TIMEOUT) const

status_t SendMessage(BMessage *message,
BHandler *replyHandler = NULL,

 bigtime_t deliveryTimeout = B_INFINITE_TIMEOUT) const

status_t SendMessage(BMessage *message,
 BMessenger *replyMessenger,
 bigtime_t deliveryTimeout = B_INFINITE_TIMEOUT) const

status_t SendMessage(uint32 command, BMessage *reply) const

 BMessenger

64

#B_BAD_VALUE

status_t SendMessage(uint32 command, BHandler *replyHandler = NULL) const

Sends a copy of message (or a BMessage based on a command constant) to the object's target. The caller retains ownership of message. The
function doesn't return until the message has been delivered; if you're sending a message (as opposed to a command constant) you can set a
microsecond delivery timeout through deliveryTimeout.

The target can respond to the message:

• If you supply a reply BMessage, the response is synchronous, with an optional timeout (replyTimeout) that starts ticking after the original
message has been delivered. If the response times out, or the target deletes the original message without responding, the reply>what is set
to B_NO_REPLY. The caller is responsible for allocating and freeing reply. message and reply can be the same object.

Use caution when requesting a synchronous reply: If you call SendMessage() from the target looper's thread, you'll
deadlock (or, at best, time out).

• If you supply a reply target (replyMessenger or replyHandler), the response is asynchronous, and is sent to the reply target.

• If you supply neither a reply message nor a reply target, the target's response is sent to be_app_messenger.

RETURN CODES

B_OK. The message was delivered (and the synchronous reply was received, if applicable).

• B_TIMED_OUT. deliveryTimeout expired; the message never made it to the target.

• B_WOULD_BLOCK. You requested a 0 deliveryTimeout, and the target's message queue is full.

• B_BAD_PORT_ID. The messenger's target is invalid, or the reply port was deleted while waiting for a reply (synchronous response
requests only).

• B_NO_MORE_PORTS. You asked for a synchronous reply, but there are no more reply ports.

If you specified a handler when you constructed your BMessenger, and if that handler has since changed loopers,
SendMessage() won't deliver its message, but it doesn't complain (it returns B_OK).

 Target() , IsTargetLocal() , Team()

BHandler *Target(BLooper **looper) const

bool IsTargetLocal(void) const

inline team_id Team(void) const

Target() returns the BMessenger's handler (directly) and looper (by reference in looper). This function only works for local targets. If
Target() returns NULL, it can mean one of four things:

• The target is remote; looper is set to NULL.

• The BMessenger hasn't been initialized; looper is set to NULL.

• The handler is the looper's preferred handler; looper will be valid.

• The handler has been deleted; looper will be valid given that it hasn't been deleted as well.

IsTargetLocal() returns true if the target is local. Team() returns a target's team.

Team() see Target()

 Operators

 BMessenger

65

#B_OK
#B_TIMED_OUT
#B_WOULD_BLOCK
#B_BAD_PORT_ID
#B_NO_MORE_PORTS
#B_OK

 = (assignment)

BMessenger &operator =(const BMessenger&)

Sets the left−side BMessenger's target to that of the right−side object.

 == (equality)

bool operator ==(const BMessenger&) const

Two BMessengers are equal if they have the same target.

 BMessenger

66

 BPropertyInfo
Derived from: BFlattenable

Declared in: be/app/PropertyInfo.h

Library: libbe.so

Summary

BPropertyInfo is a simple class that manages scripting. A program describes its scripting interface to a BPropertyInfo object through an array of
property_info structures, with each entry describing a piece of the scripting suite. The structure definition:

 struct

property_info
 {
 char *name;
 uint32 commands[10];
 uint32 specifiers[10];
 char *usage;
 uint32 extra_data;
 };

• name provides the name of the property this structure describes.

• commands is a zero−terminated array of commands understood by the property, i.e. B_GET_PROPERTY. If the first element is 0, it
represents a wildcard matching all possible commands.

• specifiers is a zero−terminated array of the specifiers understood by the property, i.e. B_DIRECT_SPECIFIER. If the first element is 0, it
represents a wildcard matching all possible specifiers.

• usage gives a human−readable string describing the property and its allowable commands and specifiers.

• extra_data is an area free for general use; the operating system does not touch its contents.

A BPropertyInfo is instantiated by passing a zero−terminated array of property_info to its constructor. A typical initialization of BPropertyInfo looks
like:

 static property_info prop_list[] = {
 { "duck", {B_GET_PROPERTY, B_SET_PROPERTY, 0},
 {B_DIRECT_SPECIFIER, B_INDEX_SPECIFIER, 0}, "get or set duck"},
 { "head", {B_GET_PROPERTY, 0}, {B_DIRECT_SPECIFIER, 0}, "get head"},
 { "head", {B_SET_PROPERTY, 0}, {B_DIRECT_SPECIFIER, 0}, "set head"},
 { "feet", {0}, {0}, "can do anything with his orange feet"},
 0 // terminate list
 };

 BPropertyInfo prop_info(prop_list);

Since BPropertyInfo only stores a pointer to the array, it is important that the life span of the array is at least as long as that of the BPropertyInfo
object.

Notice that BPropertyInfo doesn't impose any particular structure upon the array; in particular, not all commands and specifiers for a given property
need be placed in a single entry in the array. You are free to organize your scripting suite in whatever manner is most convenient for your particular
object.

BPropertyInfo is a descendant of BFlattenable, and can therefore be used to store a description of an object's supported scripting suite. This is
particularly useful when overriding GetSupportedSuites():

 status_t MyHandler::GetSupportedSuites(BMessage *msg)
 {
 msg−>AddString("suites", "suite/vnd.Me−my_handler");
 BPropertyInfo prop_info(prop_list);
 msg−>AddFlat("messages", &prop_info);
 return baseClass::GetSupportedSuites(msg);
 }

Naturally, BPropertyInfo is equally as useful in interpreting the results obtained from querying an object for its supported suites.

BPropertyInfo defines the FindMatch() method designed to simplify the implementation of ResolveSpecifier(). It returns the index of the
property info matching the description given to it, or −1 if none match. This reduces ResolveSpecifier() in the simplest cases to:

 BHandler *MyHandler::ResolveSpecifier(BMessage *msg, int32 index,
 BMessage *spec, int32 form, const char *prop)
 {
 BPropertyInfo prop_info(prop_list);
 if (prop_info.FindMatch(msg, index, spec, form, prop) >= 0)
 return this;
 return baseClass::ResolveSpecifier(msg, index, spec, form, prop);
 }

Of course, for more complicated objects, ResolveSpecifier() may need to set the target handler to an object other than itself, so more
processing may be required. In those cases, the object can use the index returned by FindMatch() to help it determine the target of the scripting
message.

 Constructor and Destructor

67

#BFlattenable
PropertyInfo.h
PropertyInfo.summary.html
#BFlattenable

 BPropertyInfo()

BPropertyInfo(property_info *p = NULL, bool free_on_delete = false)

Initializes the object with the specified zero−terminated array p of property_info. Passing true in free_on_delete instructs the object to free the
memory associated with the property_info when the object is destroyed. BPropertyInfo does not copy the array, so it is important that the array is not
deleted or otherwise destroyed while the BPropertyInfo is in use.

 ~BPropertyInfo()

~BPropertyInfo()

If free_on_delete set to true in the constructor, the destructor frees all memory associated with the property_info. Otherwise, does nothing.

 Member Functions

 AllowsTypeCode()

Implementation detail. See BFlattenable::AllowsTypeCode().

 FindMatch()

int32 FindMatch(BMessage *msg, int32 index , BMessage *spec, int32 form,
 const char *prop, void *data = NULL) const

Passed a property name in prop, a specifier in form, and a command in msg−>what, searches the property_info array for an item supporting the
specified scripting request. If index is nonzero, then FindMatch() only searches those property_info structures with the wildcard command (first
element of command array equal to 0). Otherwise, it searches through all available property_info structures for a match. If a match is found, it fills the
memory at data with the contents of the extra_data field of the match and returns the index of the match in the array. Otherwise, it returns B_ERROR.

 Flatten

Implementation detail. See BFlattenable::Flatten().

 FlattenedSize()

Implementation detail. See BFlattenable::FlattenedSize().

 IsFixedSize()

Implementation detail. See BFlattenable::IsFixedSize().

 TypeCode()

Implementation detail. See BFlattenable::TypeCode().

 PrintToStream()

void PrintToStream(void) const

Prints information about the BPropertyInfo to standard output.

 BPropertyInfo

68

 PropertyInfo()

const property_info *PropertyInfo(void) const

Returns the property_info list associated with the object.

 Unflatten()

Implementation detail. See BFlattenable::Unflatten().

 BPropertyInfo

69

 BRoster
Derived from: none

Declared in: be/app/Roster.h

Library: libbe.so

Summary

The BRoster object represents a service that keeps a roster of all applications currently running. It can provide information about any of those
applications, activate one of them, add another application to the roster by launching it, or get information about an application to help you decide
whether to launch it.

There's just one roster and it's shared by all applications. When an application starts up, a BRoster object is constructed and assigned to a global
variable, be_roster. You always access the roster through this variable; you never have to instantiate a BRoster in application code.

The BRoster identifies applications in three ways:

• By entry_ref references to the executable files where they reside.

• By their signatures. The signature is a unique identifier for the application assigned as a file−system attribute or resource at compile time or
by the BApplication constructor at run time. You can obtain signatures for the applications you develop by contacting Be's developer
support staff. They can also tell you what the signatures of other applications are.

• At run time, by their team_ids. A team is a group of threads sharing an address space; every application is a team.

If an application is launched more than once, the roster will include one entry for each instance of the application that's running. These instances will
have the same signature, but different team identifiers.

 Constructor and Destructor

 BRoster()

BRoster(void)

Sets up the object's connection to the roster service.

When an application constructs its BApplication object, the system constructs a BRoster object and assigns it to the be_roster global variable. A
BRoster is therefore readily available from the time the application is initialized until the time it quits; you don't have to construct one. The constructor
is public only to give programs that don't have BApplication objects access to the roster.

 ~BRoster()

~BRoster()

Does nothing.

 Member Functions

 ActivateApp()

status_t ActivateApp(team_id team) const

Activates the team application (by bringing one of its windows to the front and making it the active window). This function works only if the target
application has a window on−screen. The newly activated application is notified with a B_APP_ACTIVATED message.

See also: BApplication::AppActivated()

 AddToRecentDocuments() , GetRecentDocuments()

70

Roster.h
Roster.summary.html
#entry_ref
#team_id

void AddToRecentDocuments(const entry_ref *document,
 const char *appSig = NULL) const

void GetRecentDocuments(BMessage *refList, int32 maxCount,
 const char *ofType = NULL,
 const char *openedByAppSig = NULL) const

void GetRecentDocuments(BMessage *refList, int32 maxCount,
 const char *ofTypeList[] = NULL, int32 ofTypeListCount,
 const char *openedByAppSig = NULL) const

AddToRecentDocuments() adds the document file specified by document to the list of recent documents. If you wish to record that a specific
application used the document, you can specify the signature of that application using the appSig argument; otherwise you can specify NULL.

GetRecentDocuments() returns a list of the most recent documents. The BMessage refList will be filled out with information about the
maxCount most recently used documents. If you want to obtain a list of documents of a specific type, you can specify a pointer to that MIME type
string in the ofType argument. Likewise, if you're only interested in files that want to be opened by a specific application, specify that application's
signature in openedByAppSig; if you don't care, pass NULL.

If you want to get a list of files of multiple types, you can specify a pointer to an array of strings in ofTypeList, and the number of types in the list in
ofTypeListCount.

Specifying NULL for ofType will fetch all files of all types.

The resulting refList will have a field, "refs", containing the entry_refs to the resulting list of files.

 AddToRecentFolders() , GetRecentFolders()

void AddToRecentFolders(const entry_ref *folder,
 const char *appSig = NULL) const

void GetRecentFolders(BMessage *refList, int32 maxCount,
 const char *openedByAppSig = NULL) const

AddToRecentFolders() adds the folder specified by folder to the list of recent folders. If you wish to record that a specific application used the
folder, you can specify the signature of that application using the appSig argument; otherwise you can use NULL.

GetRecentFolders() returns a list of the most recently−accessed folders. The BMessage refList will be filled out with information about the
maxCount most recently used folders. If you're only interested in folders that were used by a specific application, specify that application's signature
in openedByAppSig; if you don't care, pass NULL.

The resulting refList will have a field, "refs", containing the entry_refs to the resulting list of folders.

 Broadcast()

status_t Broadcast(BMessage *message) const

status_t Broadcast(BMessage *message , BMessenger reply_to) const

Sends the message to every running application, except to those applications (B_ARGV_ONLY) that don't accept messages. The message is sent
asynchronously with a timeout of 0. As is the case for other message−sending functions, the caller retains ownership of the message.

This function returns immediately after setting up the broadcast operation. It doesn't wait for the messages to be sent and doesn't report any errors
encountered when they are. It returns an error only if it can't start the broadcast operation. If successful in getting the operation started, it returns B_OK.

Replies to the broadcasted message will be sent via the reply_to BMessenger, if specified. If reply_to is absent, the replies will be lost.

See also: BMessenger::SendMessage()

 FindApp()

status_t FindApp(const char *type, entry_ref *app) const

status_t FindApp(entry_ref *file, entry_ref *app) const

 BRoster

71

#B_OK

Finds the application associated with the MIME data type or with the specified file, and modifies the app entry_ref structure so that it refers to
the executable file for that application. If the type is an application signature, this function finds the application that has that signature. Otherwise, it
finds the preferred application for the type. If the file is an application executable, FindApp() merely copies the file reference to the app argument.
Otherwise, it finds the preferred application for the file type.

In other words, this function goes about finding an application in the same way that Launch() finds the application it will launch.

If it can translate the type or file into a reference to an application executable, FindApp() returns B_OK. If not, it returns an error code, typically one
describing a file system error.

See also: Launch()

 GetAppInfo() , GetRunningAppInfo() , GetActiveAppInfo()

status_t GetAppInfo(const char *signature, app_info *appInfo) const

status_t GetAppInfo(entry_ref *executable, app_info *appInfo) const

status_t GetRunningAppInfo(team_id team, app_info *appInfo) const

status_t GetActiveAppInfo(app_info *appInfo) const

These functions return (in appInfo) information about a specific application. In all cases, the application must be running.

• GetAppInfo() finds an app that has the given signature, or that was launched from the executable file. If there's more than one such
app, the function chooses one at random.

• GetRunningAppInfo() reports on the app that corresponds to the given team identifier.

• GetActiveAppInfo() reports on the currently active app.

If they're able to fill in the app_info structure with meaningful values, these functions return B_OK. GetActiveAppInfo() returns B_ERROR if
there's no active application. GetRunningAppInfo() returns B_BAD_TEAM_ID if team isn't a valid team identifier for a running application.
GetAppInfo() returns B_ERROR if the application isn't running.

The app_info structure contains the following fields:

thread_id thread
The identifier for the application's main thread of execution, or 1 if the application isn't running. (The main thread is the thread in which the application
is launched and in which its main() function runs.)

team_id team
The identifier for the application's team, or 1 if the application isn't running. (This will be the same as the team passed to
GetRunningAppInfo().)

port_id port
The port where the application's main thread receives messages, or 1 if the application isn't running.

uint32 flags
A mask that contains information about the behavior of the application.

entry_ref ref
A reference to the file that was, or could be, executed to run the application. (This will be the same as the executable passed to GetAppInfo().)

char signature[]
The signature of the application. (This will be the same as the signature passed to GetAppInfo().)

The flags mask can be tested (with the bitwise & operator) against these two constants:

• B_BACKGROUND_APP. The application won't appear in the Deskbar's application list.

• B_ARGV_ONLY . The application can't receive messages. Information can be passed to it at launch only, in an array of argument strings
(as on the command line).

The flags mask also contains a value that explains the application's launch behavior. This value must be filtered out of flags by combining
flags with the B_LAUNCH_MASK constant. For example:

 unit32 behavior = theInfo.flags & B_LAUNCH_MASK;

The result will match one of these three constants:

• B_EXCLUSIVE_LAUNCH. The application can be launched only if an application with the same signature isn't already running.

• B_SINGLE_LAUNCH . The application can be launched only once from the same executable file. However, an application with the same
signature might be launched from a different executable. For example, if the user copies an executable file to another directory, a separate
instance of the application can be launched from each copy.

• B_MULTIPLE_LAUNCH . There are no restrictions. The application can be launched any number of times from the same executable file.

These flags affect BRoster's Launch() function. Launch() can always start up a B_MULTIPLE_LAUNCH application. However, it can't launch a

 BRoster

72

#entry_ref
#B_OK
#B_OK
#B_ERROR
#B_BAD_TEAM_ID
#B_ERROR
#team
#&

B_SINGLE_LAUNCH application if a running application was already launched from the same executable file. It can't launch a
B_EXCLUSIVE_LAUNCH application if an application with the same signature is already running.

See also: Launch() , BApplication::GetAppInfo()

 GetAppList()

void GetAppList(BList *teams) const

void GetAppList(const char *signature , BList *teams) const

Fills in the teams BList with team identifiers for applications in the roster. Each item in the list will be of type team_id. It must be cast to that type
when retrieving it from the list, as follows:

 BList *teams = new BList;
 be_roster−>GetAppList(teams);
 team_id who = (team_id)teams−>ItemAt(someIndex);

The list will contain one item for each instance of an application that's running. For example, if the same application has been launched three times, the
list will include the team_ids for all three running instances of that application.

If a signature is passed, the list identifies only applications running under that signature. If a signature isn't specified, the list identifies all running
applications.

See also: TeamFor() , the BMessenger constructor

 GetRecentApps()

void GetRecentApps(BMessage *refList, int32 maxCount) const

GetRecentApps() returns a list of the most recently−launched applications. The BMessage refList will be filled out with information about the
maxCount most recently−launched applications.

The resulting refList will have a field, "refs", containing the entry_refs to the resulting applications.

GetRecentDocuments() see AddToRecentDocuments()

GetRecentFolders() see AddToRecentFolders()

IsRunning() see TeamFor()

 Launch()

status_t Launch(const char *type,
BMessage *message = NULL,

 team_id *team = NULL) const

status_t Launch(const char *type,
BList *messages,

 team_id *team = NULL) const

status_t Launch(const char *type,
 int argc,
 char **argv,
 team_id *team = NULL) const

status_t Launch(const entry_ref *file,
 const BMessage *message = NULL,
 team_id *team = NULL) const

status_t Launch(const entry_ref *file,
 const BList *messages,
 team_id *team = NULL) const

 BRoster

73

#BList
#BList
#BList
#team_id
#team_id
#BList
#BList

status_t Launch(const entry_ref *file,
 int argc,
 const char * const char *argv,
 team_id *team = NULL) const

Launches the application associated with a MIME type or with a particular file. If the MIME type is an application signature, this function launches
the application with that signature. Otherwise, it launches the preferred application for the type. If the file is an application executable, it launches that
application. Otherwise, it launches the preferred application for the file type and passes the file reference to the application in a
B_REFS_RECEIVED message. In other words, Launch() finds the application to launch just as FindApp() finds the application for a particular
type or file.

If a message is specified, it will be sent to the application on−launch where it will be received and responded to before the application is notified that
it's ready to run. Similarly, if a list of messages is specified, each one will be delivered on−launch. The caller retains ownership of the
BMessage objects (and the container BList); they won't be deleted for you.

Sending an on−launch message is appropriate if it helps the launched application configure itself before it starts getting other messages. To launch an
application and send it an ordinary message, call Launch() to get it running, then set up a BMessenger object for the application and call
BMessenger's SendMessage() function.

If the target application is already running, Launch() won't launch it again, unless it permits multiple instances to run concurrently (it doesn't wait
for the messages to be sent or report errors encountered when they are). It fails for B_SINGLE_LAUNCH and B_EXCLUSIVE_LAUNCH applications
that have already been launched. Nevertheless, it assumes that you want the messages to get to the application and so delivers them to the currently
running instance.

Instead of messages, you can launch an application with an array of argument strings that will be passed to its main() function. argv contains the
array and argc counts the number of strings. If the application accepts messages, this information will also be packaged in a
B_ARGV_RECEIVED message that the application will receive on−launch.

If successful, Launch() places the identifier for the newly launched application in the variable referred to by team and returns B_OK. If
unsuccessful, it sets the team variable to 1 and returns an error code, typically one of the following:

• B_BAD_VALUE. The type or file is not valid, or an attempt is being made to send an on−launch message to an application that doesn't
accept messages (that is, to a B_ARGV_ONLY application).

• B_ALREADY_RUNNING.,The application is already running and can't be launched again (it's a B_SINGLE_LAUNCH or
B_EXCLUSIVE_LAUNCH application).

• B_LAUNCH_FAILED.,The attempt to launch the application failed for some other reason, such as insufficient memory.

• A file system error. The file or type can't be matched to an application.

See also: the BMessenger class, GetAppInfo() , FindApp()

 StartWatching() , StopWatching()

status_t StartWatching(BMessenger target, uint32 events = B_REQUEST_LAUNCHED | B_REQUEST_QUIT) const

status_t StopWatching(BMessenger target) const

StartWatching() initiates the application event monitor, which is used for keeping track of events such as application launches. The caller
specifies the events to monitor through the events argument; target is the BMessenger to which the corresponding notification messages are sent. The
events flags and the corresponding messages are listed below:

B_REQUEST_LAUNCHED B_SOME_APP_LAUNCHED

B_REQUEST_QUIT B_SOME_APP_QUIT

B_REQUEST_ACTIVATED B_SOME_APP_ACTIVATED

The fields in a notification message describe the application that was launched, quit, or activated:

"mime_sig" B_STRING_TYPE MIME signature

"team" B_INT32_TYPE team_id

"thread" B_INT32_TYPE thread_id

"flags" B_INT32_TYPE application flags

"ref" B_REF_TYPE executable's entry_ref

 BRoster

74

#B_OK
#B_BAD_VALUE
#B_SOME_APP_LAUNCHED
#B_SOME_APP_QUIT
#B_SOME_APP_ACTIVATED
#B_STRING_TYPE
#B_INT32_TYPE
#team_id
#B_INT32_TYPE
#thread_id
#B_INT32_TYPE
#B_REF_TYPE
#entry_ref

StopWatching() terminates the application monitor previously initiated for a given BMessenger.

StartWatching()

 TeamFor() , IsRunning()

team_id TeamFor(const char *signature) const

team_id TeamFor(entry_ref *executable) const

bool IsRunning(const char *signature) const

bool IsRunning(entry_ref *executable) const

Both these functions query whether the application identified by its signature or by a reference to its executable file is running.
TeamFor()StartWatching() returns its team identifier if it is, and B_ERROR if it's not. IsRunning() returns true if it is, and false if it's
not.

If the application is running, you probably will want its team identifier (to set up a BMessenger, for example). Therefore, it's most economical to
simply call TeamFor() and forego IsRunning().

If more than one instance of the signature application is running, or if more than one instance was launched from the same executable file,
TeamFor() arbitrarily picks one of the instances and returns its team_id.

See also: GetAppList()

 BRoster

75

#B_ERROR
#team_id

 Global Variables, Constants, and Defined Types
This section lists the global variables, constants, and defined types that are defined in the Application Kit. Error codes are documented in the chapter
on the Support Kit.

Although the Application Kit defines the constants for all system messages (such as B_REFS_RECEIVED and B_KEY_DOWN), only those that objects
in this kit handle are listed here. Those that designate interface messages are documented in the chapter on the Interface Kit.

 Global Variables

 be_app

Declared in: be/app/Application.h

BApplication *be_app

This variable provides global access to the BApplication object. It's initialized by the BApplication constructor.

See also: the BApplication class

 be_app_messenger

Declared in: be/app/Application.h

BMessenger *be_app_messenger

This variable provides global access to a BMessenger object whose target is be_app. It's initialized by the BApplication constructor.

See also: the BApplication class

 be_clipboard

Declared in: be/app/Clipboard.h

BClipboard *be_clipboard

This variable gives applications access to the system clipboardthe shared repository of data for cut, copy, and paste operations. It's initialized at startup.

See also: the BClipboard class

 be_roster

Declared in: be/app/Roster.h

const BRoster *be_roster

This variable points to the application's global BRoster object. The BRoster keeps a roster of all running applications and can add applications to the
roster by launching them. It's initialized when the application starts up.

See also: the BRoster class

 Constants

 Application Flags

Declared in: be/app/Roster.h

76

#B_KEY_DOWN

 B_BACKGROUND_APP

 B_ARGV_ONLY

 B_LAUNCH_MASK

These constants are used to get information from the flags field of an app_info structure.

See also: BRoster::GetAppInfo(), "Launch Constants" below

 Application Messages

Declared in: be/app/AppDefs.h

 B_QUIT_REQUESTED

 B_READY_TO_RUN

 B_APP_ACTIVATED

 B_ABOUT_REQUESTED

 B_QUIT_REQUESTED

 B_ARGV_RECEIVED

 B_REFS_RECEIVED

 B_PULSE

These constants represent the system messages that are recognized and given special treatment by BApplication and BLooper dispatchers. Application
messages concern the application as a whole, rather than any particular window thread. See the introduction to this chapter and the BApplication class
for details.

See also: "Application Messages" on page 30 of the BApplication class

 Cursor Constants

Declared in: be/app/AppDefs.h

const unsigned char B_HAND_CURSOR []

const unsigned char B_I_BEAM_CURSOR []

These constants contain all the data needed to set the cursor to the default hand image or to the standard I−beam image for text selection.

See also: BApplication::SetCursor()

 filter_result Constants

Declared in: be/app/MessageFilter.h

 B_SKIP_MESSAGE

 B_DISPATCH_MESSAGE

These constants list the possible return values of a filter function.

See also: BMessageFilter::Filter()

 Global Variables, Constants, and Defined Types

77

 Launch Constants

Declared in: be/app/Roster.h

 B_MULTIPLE_LAUNCH

 B_SINGLE_LAUNCH

 B_EXCLUSIVE_LAUNCH

These constants explain whether an application can be launched any number of times, only once from a particular executable file, or only once for a
particular application signature. This information is part of the flags field of an app_info structure and can be extracted using the
B_LAUNCH_MASK constant.

See also: BRoster::GetAppInfo(), "Application Flags" above

 Looper Port Capacity

Declared in: be/app/Looper.h

 B_LOOPER_PORT_DEFAULT_CAPACITY

This constant records the default capacity of a BLooper's port. The default is 100 slots; a greater or smaller number can be specified when constructing
the BLooper.

See also: the BLooper constructor

 Message Constants

Declared in: be/app/AppDefs.h

 B_REPLY

 B_NO_REPLY

 B_MESSAGE_NOT_UNDERSTOOD

 B_SAVE_REQUESTED

 B_CANCEL

 B_SIMPLE_DATA

 B_MIME_DATA

 B_ARCHIVED_OBJECT

 B_UPDATE_STATUS_BAR

 B_RESET_STATUS_BAR

 B_NODE_MONITOR

 B_QUERY_UPDATE

 B_CUT

 B_COPY

 B_PASTE

 B_SELECT_ALL

 Global Variables, Constants, and Defined Types

78

 B_SET_PROPERTY

 B_GET_PROPERTY

 B_CREATE_PROPERTY

 B_DELETE_PROPERTY

 B_GET_SUPPORTED_SUITES

These constants mark messages that the system sometimes puts together, but that aren't dispatched like system messages. See "Standard Messages" in
the Message Protocols appendix for details.

See also: BMessage::SendReply() , the BTextView class in the Interface Kit

 message_delivery Constants

Declared in: be/app/MessageFilter.h

 B_ANY_DELIVERY

 B_DROPPED_DELIVERY

 B_PROGRAMMED_DELIVERY

These constants distinguish the delivery criterion for filtering a BMessage.

See also: the BMessageFilter constructor

 message_source Constants

Declared in: be/app/MessageFilter.h

 B_ANY_SOURCE

 B_REMOTE_SOURCE

 B_LOCAL_SOURCE

These constants list the possible constraints that a BMessageFilter might impose on the source of the messages it filters.

See also: the BMessageFilter constructor

 Message Specifiers

Declared in: be/app/Message.h

 B_NO_SPECIFIER

 B_DIRECT_SPECIFIER

 B_INDEX_SPECIFIER

 B_REVERSE_INDEX_SPECIFIER

 B_RANGE_SPECIFIER

 B_REVERSE_RANGE_SPECIFIER

 B_NAME_SPECIFIER

 B_ID_SPECIFIER

 Global Variables, Constants, and Defined Types

79

#BTextView

 B_SPECIFIERS_END = 128

These constants fill the what slot of specifier BMessages. Each constant indicates what other information the specifer contains and how it should be
interpreted. For example, a B_REVERSE_INDEX_SPECIFIER message has an "index" field with an index that counts backwards from the end of a
list. A B_NAME_SPECIFIER message includes a "name" field that names the requested item.

 Defined Types

 app_info

Declared in: be/app/Roster.h

typedef struct {
 thread_id thread;
 team_id team;
 port_id port;
 uint32 flags;
 entry_ref ref;
 char signature[B_MIME_TYPE_LENGTH];

app_info(void);
~app_info(void);

 } app_info

This structure is used by BRoster's GetAppInfo(), GetRunningAppInfo() , and GetActiveAppInfo() functions to report information
about an application. Its constructor ensures that its fields are initialized to invalid values. To get meaningful values for an actual application, you must
pass the structure to one of the BRoster functions. See those functions for a description of the various fields.

See also: BRoster::GetAppInfo()

 filter_result

Declared in: be/app/MessageFilter.h

typedef enum { . . . } filter_result

This type distinguishes between the B_SKIP_MESSAGE and B_DISPATCH_MESSAGE return values for a filter function.

See also: BMessageFilter::Filter()

 message_delivery

Declared in: be/app/MessageFilter.h

typedef enum { . . . } message_delivery

This type enumerates the delivery criteria for filtering a message.

See also: the BMessageFilter constructor

 message_source

Declared in: be/app/MessageFilter.h

typedef enum { . . . } message_source

This type enumerates the source criteria for filtering a message.

See also: the BMessageFilter constructor

 Global Variables, Constants, and Defined Types

80

 Global Variables, Constants, and Defined Types

81

The Application Kit: Master Index

"

"Messenger" BHandler

"Name" BApplication

"Suites" BHandler

"Window" BApplication

.

=

= BMessage

= BMessenger

== BMessenger

A

B_ABOUT_REQUESTED Global Variables, Constants, and Defined Types

ActivateApp() BRoster

AddBool() BMessage

AddCommonFilterList() BLooper

AddData() BMessage

AddDouble() BMessage

AddFilter() BHandler

AddFlat() BMessage

AddFloat() BMessage

AddHandler() BLooper

AddInt16() BMessage

AddInt32() BMessage

AddInt64() BMessage

AddInt8() BMessage

AddMessage() BMessageQueue

AddMessage() BMessage

82

AddMessenger() BMessage

AddPoint() BMessage

AddPointer() BMessage

AddRect() BMessage

AddRef() BMessage

AddSpecifier() BMessage

AddString() BMessage

AddToRecentDocuments() BRoster

AddToRecentFolders() BRoster

Allocation BLooper

AllowsTypeCode() BPropertyInfo

B_ANY_DELIVERY Global Variables, Constants, and Defined Types

B_ANY_SOURCE Global Variables, Constants, and Defined Types

AppActivated() BApplication

AppResources() BApplication

B_APP_ACTIVATED Global Variables, Constants, and Defined Types

app_info Global Variables, Constants, and Defined Types

BApplication BApplication

BApplication() BApplication

~BApplication() BApplication

Application Flags Global Variables, Constants, and Defined Types

The Application Kit The Application Kit

The Application Kit The Application Kit

Application Messages BApplication

Application Messages Global Variables, Constants, and Defined Types

Archive() BApplication

Archive() BHandler

Archived Fields BApplication

Archived Fields BHandler

B_ARCHIVED_OBJECT Global Variables, Constants, and Defined Types

The Application Kit: Master Index

83

ArgvReceived() BApplication

B_ARGV_ONLY Global Variables, Constants, and Defined Types

B_ARGV_RECEIVED Global Variables, Constants, and Defined Types

B

The BLooper Class Messaging

The BMessage Class Messaging

The BMessenger Class Messaging

B_BACKGROUND_APP Global Variables, Constants, and Defined Types

Basics Scripting

be_app and Subclassing BApplication BApplication

be_app BApplication

be_app Global Variables, Constants, and Defined Types

be_app_messenger BApplication

be_app_messenger Global Variables, Constants, and Defined Types

be_clipboard Global Variables, Constants, and Defined Types

be_roster Global Variables, Constants, and Defined Types

BeginInvokeNotify() BInvoker

Broadcast() BRoster

C

B_COPY Global Variables, Constants, and Defined Types

B_CUT Global Variables, Constants, and Defined Types

Clear() BClipboard

BClipboard BClipboard

BClipboard() BClipboard

~BClipboard() BClipboard

The Clipboard Message BClipboard

Command() BInvoker

Command() BMessageFilter

Commands Scripting

The Application Kit: Master Index

84

Commit() BClipboard

CommonFilterList() BLooper

Constants and Defined Types BMessageFilter

Constants BLooper

Constants Global Variables, Constants, and Defined Types

Constructing the Object and Running the Message LoopBApplication

Constructor and Destructor BApplication

Constructor and Destructor BClipboard

Constructor and Destructor BCursor

Constructor and Destructor BHandler

Constructor and Destructor BInvoker

Constructor and Destructor BLooper

Constructor and Destructor BMessageFilter

Constructor and Destructor BMessageQueue

Constructor and Destructor BMessageRunner

Constructor and Destructor BMessage

Constructor and Destructor BMessenger

Constructor and Destructor BPropertyInfo

Constructor and Destructor BRoster

CountHandlers() BLooper

CountLockRequests() BLooper

CountLocks() BLooper

CountMessages() BMessageQueue

CountNames() BMessage

CountWindows() BApplication

B_COUNT_PROPERTIES Scripting

B_CREATE_PROPERTY Global Variables, Constants, and Defined Types

B_CREATE_PROPERTY Scripting

Creating and Sending Scripting Messages Scripting

CurrentMessage() BLooper

The Application Kit: Master Index

85

BCursor BCursor

BCursor() BCursor

~BCursor() BCursor

Cursor Constants Global Variables, Constants, and Defined Types

Cursor Data Format BCursor

Cursor Data Format BCursor

D

Data Members BMessage

DataSource() BClipboard

Defined Types Global Variables, Constants, and Defined Types

delete BMessage

B_DELETE_PROPERTY Global Variables, Constants, and Defined Types

B_DELETE_PROPERTY Scripting

DetachCurrentMessage() BLooper

B_DIRECT_SPECIFIER Global Variables, Constants, and Defined Types

B_DIRECT_SPECIFIER Scripting

DispatchMessage() BLooper

B_DISPATCH_MESSAGE Global Variables, Constants, and Defined Types

DropPoint() BMessage

B_DROPPED_DELIVERY Global Variables, Constants, and Defined Types

E

Example Scripting

B_EXCLUSIVE_LAUNCH Global Variables, Constants, and Defined Types

B_EXECUTE_PROPERTY Scripting

F

Filter() BMessageFilter

FilterList() BHandler

filter_hook BMessageFilter

The Application Kit: Master Index

86

filter_result BMessageFilter

filter_result Constants Global Variables, Constants, and Defined Types

filter_result Global Variables, Constants, and Defined Types

Filtering BHandler

FiltersAnyCommand() BMessageFilter

FindApp() BRoster

FindBool() BMessage

FindData() BMessage

FindDouble() BMessage

FindFlat() BMessage

FindFloat() BMessage

FindInt16() BMessage

FindInt32() BMessage

FindInt64() BMessage

FindMatch() BPropertyInfo

FindMessage() BMessageQueue

FindMessage() BMessage

FindMessenger() BMessage

FindPoint() BMessage

FindPointer() BMessage

FindRect() BMessage

FindRef() BMessage

FindString() BMessage

Finding a Function Messaging

Finding a Handler Messaging

FintInt8() BMessage

Flatten() BMessage

Flatten BPropertyInfo

FlattenedSize() BMessage

FlattenedSize() BPropertyInfo

The Application Kit: Master Index

87

From Looper to Handler Messaging

Function Summary BHandler

Function Summary BInvoker

Function Summary BLooper

Function Summary BMessageQueue

Function Summary BMessage

Function Summary BMessenger

Function Summary BPropertyInfo

G

GetAppInfo() BApplication

GetAppInfo() BRoster

GetAppList() BRoster

GetCurrentSpecifier() BMessage

GetInfo() BMessageRunner

GetInfo() BMessage

GetRecentApps() BRoster

GetRecentDocuments() BRoster

GetRecentFolders() BRoster

GetRunningAppInfo() BRoster

GetSupportedSuites() BHandler

GetSupportedSuites() Scripting

B_GET_PROPERTY Global Variables, Constants, and Defined Types

B_GET_PROPERTY Scripting

B_GET_SUPPORTED_SUITES Global Variables, Constants, and Defined Types

Global Variables BApplication

Global Variables Global Variables, Constants, and Defined Types

Global Variables, Constants, and Defined TypesGlobal Variables, Constants, and Defined Types

Global Variables, Constants, and Defined TypesGlobal Variables, Constants, and Defined Types

H

The Application Kit: Master Index

88

#Function%20Summary
#Function%20Summary
#Function%20Summary
#Function%20Summary
#Function%20Summary
#Function%20Summary
#Function%20Summary

Handler Associations Messaging

HandlerAt() BLooper

BHandler BHandler

BHandler() BHandler

~BHandler() BHandler

HandlerForReply() BInvoker

The Handler List BHandler

Handling a Reply Messaging

HasSpecifiers() BMessage

HideCursor() BApplication

Hook Functions BApplication

Hook Functions BHandler

Hook Functions BLooper

Hook Functions BMessageFilter

I

B_ID_SPECIFIER Global Variables, Constants, and Defined Types

B_ID_SPECIFIER Scripting

IndexOf() BLooper

B_INDEX_SPECIFIER Global Variables, Constants, and Defined Types

B_INDEX_SPECIFIER Scripting

Inheritance and the Handler Chain Messaging

InitCheck() BMessageRunner

Instantiate() BCursor

Invoke() BInvoker

InvokeKind() BInvoker

InvokeNotify() BInvoker

BInvoker BInvoker

BInvoker() BInvoker

~BInvoker() BInvoker

The Application Kit: Master Index

89

IsCursorHidden() BApplication

IsEmpty() BMessageQueue

IsEmpty() BMessage

IsFixedSize() BPropertyInfo

IsLaunching() BApplication

IsLocked() BClipboard

IsLocked() BLooper

IsReply() BMessage

IsRunning() BRoster

IsSourceRemote() BMessage

IsSourceWaiting() BMessage

IsSystem() BMessage

IsTargetLocal() BInvoker

IsTargetLocal() BMessenger

IsValid() BMessenger

L

Launch Constants Global Variables, Constants, and Defined Types

B_LAUNCH_MASK Global Variables, Constants, and Defined Types

LocalCount() BClipboard

B_LOCAL_SOURCE Global Variables, Constants, and Defined Types

Lock() BClipboard

Lock() BLooper

Lock() BMessageQueue

LockLooper() BHandler

LockLooperWithTimeout() BHandler

LockTarget() BMessenger

LockTargetWithTimeout() BMessenger

LockWithTimeout() BLooper

Locking BLooper

The Application Kit: Master Index

90

LockingThread() BLooper

Looper() BHandler

BLooper BLooper

BLooper() BLooper

~BLooper() BLooper

Looper() BMessageFilter

LooperForThread() BLooper

Looper Port Capacity Global Variables, Constants, and Defined Types

B_LOOPER_PORT_DEFAULT_CAPACITY BLooper

B_LOOPER_PORT_DEFAULT_CAPACITY Global Variables, Constants, and Defined Types

M

Making Objects Scriptable Scripting

Member Functions BApplication

Member Functions BClipboard

Member Functions BHandler

Member Functions BInvoker

Member Functions BLooper

Member Functions BMessageFilter

Member Functions BMessageQueue

Member Functions BMessageRunner

Member Functions BMessage

Member Functions BMessenger

Member Functions BPropertyInfo

Member Functions BRoster

Message() BInvoker

BMessage BMessage

BMessage() BMessage

~BMessage() BMessage

Message Constants Global Variables, Constants, and Defined Types

The Application Kit: Master Index

91

MessageDelivery() BMessageFilter

BMessageFilter BMessageFilter

BMessageFilter() BMessageFilter

~BMessageFilter() BMessageFilter

Message Filters Messaging

BMessage Ownership BMessage

Message Protocols Messaging

MessageQueue() BLooper

BMessageQueue BMessageQueue

BMessageQueue() BMessageQueue

~BMessageQueue() BMessageQueue

MessageReceived() BHandler

MessageReceived() BLooper

MessageReceived() Scripting

BMessageRunner BMessageRunner

BMessageRunner() BMessageRunner

~BMessageRunner() BMessageRunner

MessageSource() BMessageFilter

Message Specifiers Global Variables, Constants, and Defined Types

message_delivery BMessageFilter

message_delivery Constants Global Variables, Constants, and Defined Types

message_delivery Global Variables, Constants, and Defined Types

B_MESSAGE_NOT_UNDERSTOOD Global Variables, Constants, and Defined Types

message_source BMessageFilter

message_source Constants Global Variables, Constants, and Defined Types

message_source Global Variables, Constants, and Defined Types

Messages and Handlers BLooper

Messaging Messaging

Messaging Messaging

Messenger() BInvoker

The Application Kit: Master Index

92

BMessenger BMessenger

BMessenger() BMessenger

~BMessenger() BMessenger

B_MIME_DATA Global Variables, Constants, and Defined Types

B_MULTIPLE_LAUNCH Global Variables, Constants, and Defined Types

N

Name() BHandler

B_NAME_SPECIFIER Global Variables, Constants, and Defined Types

B_NAME_SPECIFIER Scripting

new BMessage

NextHandler() BHandler

NextMessage() BMessageQueue

B_NO_REPLY Global Variables, Constants, and Defined Types

B_NO_SPECIFIER Global Variables, Constants, and Defined Types

B_NODE_MONITOR Global Variables, Constants, and Defined Types

Notifiers and Observers BHandler

O

Operators BMessageFilter

Operators BMessage

Operators BMessenger

Other Topics BApplication

P

B_PULSE Global Variables, Constants, and Defined Types

Persistence BClipboard

PopSpecifier() BMessage

Port Capacity BLooper

PostMessage() BLooper

The PostMessage() Function Messaging

The Application Kit: Master Index

93

PreferredHandler() BLooper

Preparatory Reading BMessage

Previous() BMessage

PrintToStream() BMessage

PrintToStream() BPropertyInfo

Priority BLooper

B_PROGRAMMED_DELIVERY Global Variables, Constants, and Defined Types

Properties and Specifiers Scripting

BPropertyInfo BPropertyInfo

PropertyInfo() BPropertyInfo

~BPropertyInfo() BPropertyInfo

property_info BPropertyInfo

Pulse() BApplication

Q

Quit() BApplication

Quit() BLooper

QuitRequested() BApplication

QuitRequested() BLooper

B_QUIT_REQUESTED Global Variables, Constants, and Defined Types

R

B_RANGE_SPECIFIER Global Variables, Constants, and Defined Types

B_RANGE_SPECIFIER Scripting

Reading from the Clipboard BClipboard

ReadyToRun() BApplication

B_READY_TO_RUN Global Variables, Constants, and Defined Types

Receiving a Message Messaging

RefsReceived() BApplication

B_REFS_RECEIVED Global Variables, Constants, and Defined Types

B_REMOTE_SOURCE Global Variables, Constants, and Defined Types

The Application Kit: Master Index

94

RemoveCommonFilterList() BLooper

RemoveData() BMessage

RemoveFilter() BHandler

RemoveHandler() BLooper

RemoveMessage() BMessageQueue

RemoveName() BMessage

ReplaceBool() BMessage

ReplaceData() BMessage

ReplaceDouble() BMessage

ReplaceFlat() BMessage

ReplaceFloat() BMessage

ReplaceInt16() BMessage

ReplaceInt32() BMessage

ReplaceInt64() BMessage

ReplaceInt8() BMessage

ReplaceMessage() BMessage

ReplaceMessenger() BMessage

ReplacePoint() BMessage

ReplacePointer() BMessage

ReplaceRect() BMessage

ReplaceRef() BMessage

ReplaceString() BMessage

Replies Scripting

B_RESET_STATUS_BAR Global Variables, Constants, and Defined Types

ResolveSpecifier() BApplication

ResolveSpecifier() BHandler

ResolveSpecifier() Scripting

ReturnAddress() BMessage

B_REVERSE_INDEX_SPECIFIER Global Variables, Constants, and Defined Types

B_REVERSE_INDEX_SPECIFIER Scripting

The Application Kit: Master Index

95

B_REVERSE_RANGE_SPECIFIER Global Variables, Constants, and Defined Types

B_REVERSE_RANGE_SPECIFIER Scripting

Revert() BClipboard

BRoster BRoster

BRoster() BRoster

~BRoster() BRoster

Run() BApplication

Run() BLooper

S

Scripting Scripting

Scripting Scripting

Scripting Suites and Properties BApplication

Scripting Suites and Properties BHandler

see BApplication

see BHandler

B_SELECT_ALL Global Variables, Constants, and Defined Types

Sem() BLooper

SendMessage() BMessenger

The SendMessage() Function Messaging

SendReply() BMessage

Sending a Message Messaging

SetCommonFilterList() BLooper

SetCount() BMessageRunner

SetCursor() BApplication

SetFilterList() BHandler

SetHandlerForReply() BInvoker

SetInterval() BMessageRunner

SetMessage() BInvoker

SetName() BHandler

The Application Kit: Master Index

96

SetNextHandler() BHandler

SetPreferredHandler() BLooper

SetPulseRate() BApplication

SetTarget() BInvoker

SetTimeout() BInvoker

B_SET_PROPERTY Global Variables, Constants, and Defined Types

B_SET_PROPERTY Scripting

ShowCursor() BApplication

B_SIMPLE_DATA Global Variables, Constants, and Defined Types

B_SINGLE_LAUNCH Global Variables, Constants, and Defined Types

B_SKIP_MESSAGE Global Variables, Constants, and Defined Types

The Specifier Stack Scripting

B_SPECIFIERS_END Global Variables, Constants, and Defined Types

StartWatchingAll() BHandler

StartWatching() BClipboard

StartWatching() BHandler

StartWatching() BRoster

Static Functions BApplication

Static Functions BCursor

Static Functions BHandler

Static Functions BLooper

StopWatchingAll() BHandler

StopWatching() BClipboard

StopWatching() BHandler

StopWatching() BRoster

Suites Scripting

The System Clipboard BClipboard

SystemCount() BClipboard

T

The Application Kit: Master Index

97

Target() BMessenger

Targets BHandler

Team() BLooper

Team() BMessenger

TeamFor() BRoster

Thread() BLooper

Timeout() BInvoker

TypeCode() BPropertyInfo

Types of Functions BMessage

U

Unflatten() BPropertyInfo

Unlock() BClipboard

Unlock() BLooper

Unlock() BMessageQueue

UnlockLooper() BHandler

B_UPDATE_STATUS_BAR Global Variables, Constants, and Defined Types

W

WasDropped() BMessage

WindowAt() BApplication

Writing to the Clipboard BClipboard

The Application Kit: Master Index

98

	The Application Kit - Table of Contents
	 The Application Kit
	 Messaging
	 Scripting
	 BApplication
	 BClipboard
	 BCursor
	 BHandler
	 BInvoker
	 BLooper
	 BMessage
	 BMessageFilter
	 BMessageQueue
	 BMessageRunner
	 BMessenger
	 BPropertyInfo
	 BRoster
	 Global Variables, Constants, and Defined Types
	The Application Kit: Master Index

